A comprehensive introduction and reference guide to the minimum description length (MDL) Principle that is accessible to researchers dealing with inductive reference in diverse areas including statistics, pattern classification, machine learning, data mining, biology, econometrics, and experimental psychology, as well as philosophers interested in the foundations of statistics.
The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern. This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology.
Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a "fast track" through the material, and boxes highlighting the most important concepts.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Peter D. Grünwald is a researcher at CWI, the National Research Institute for Mathematics and Computer Science, Amsterdam, the Netherlands. He is also affiliated with EURANDOM, the European Research Institute for the Study of Stochastic Phenomena, Eindhoven, the Netherlands.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,44 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 37,92 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1250grams, ISBN:9780262072816. N° de réf. du vendeur 6722643
Quantité disponible : 1 disponible(s)
Vendeur : WorldofBooks, Goring-By-Sea, WS, Royaume-Uni
Hardback. Etat : Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. N° de réf. du vendeur GOR007756844
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
Hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_399551693
Quantité disponible : 1 disponible(s)
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
Hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0262072815
Quantité disponible : 1 disponible(s)
Vendeur : OM Books, Sevilla, SE, Espagne
Etat : Usado - bueno. N° de réf. du vendeur 9780262072816
Quantité disponible : 1 disponible(s)
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Hardcover. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned0262072815
Quantité disponible : 1 disponible(s)