Using the tools of complexity theory, Stephen Judd develops a formal description of associative learning in connectionist networks. He rigorously exposes the computational difficulties in training neural networks and explores how certain design principles will or will not make the problems easier.Judd looks beyond the scope of any one particular learning rule, at a level above the details of neurons. There he finds new issues that arise when great numbers of neurons are employed and he offers fresh insights into design principles that could guide the construction of artificial and biological neural networks.The first part of the book describes the motivations and goals of the study and relates them to current scientific theory. It provides an overview of the major ideas, formulates the general learning problem with an eye to the computational complexity of the task, reviews current theory on learning, relates the book's model of learning to other models outside the connectionist paradigm, and sets out to examine scale-up issues in connectionist learning.Later chapters prove the intractability of the general case of memorizing in networks, elaborate on implications of this intractability and point out several corollaries applying to various special subcases. Judd refines the distinctive characteristics of the difficulties with families of shallow networks, addresses concerns about the ability of neural networks to generalize, and summarizes the results, implications, and possible extensions of the work.
Neural Network Design and the Complexity of Learning is included in the Network Modeling and Connectionism series edited by Jeffrey Elman.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
J. Stephen Judd is Visiting Assistant Professor of Computer Science at The California Institute of Technology.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 4,03 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Better World Books Ltd, Dunfermline, Royaume-Uni
Etat : Good. Ships from the UK. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur GRP29651138
Quantité disponible : 2 disponible(s)
Vendeur : Kloof Booksellers & Scientia Verlag, Amsterdam, Pays-Bas
Etat : very good. Cambridge, MA : The MIT Press, 1990. Hardcover. Dustjacket. 170 pp.Using the tools of complexity theory, Stephen Judd develops a formal description of associative learning in connectionist networks. He rigorously exposes the computational difficulties in training neural networks and explores how certain design principles will or will not make the problems easier.Neural Network Modeling and ConnectionismEnglish text. Condition : very good. Neural Network Modeling and Connectionism Condition : very good copy. ISBN 9780262100458. Keywords : , N° de réf. du vendeur 47456
Quantité disponible : 1 disponible(s)
Vendeur : ThriftBooks-Atlanta, AUSTELL, GA, Etats-Unis
Paperback. Etat : Good. No Jacket. Former library book; Missing dust jacket; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.15. N° de réf. du vendeur G0262100452I3N11
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 150 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 1272239/202
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur GRP29651138
Quantité disponible : 1 disponible(s)