Boosting: Foundations and Algorithms (Adaptive Computation and Machine Learning series)

Note moyenne 3,88
( 17 avis fournis par Goodreads )
 
9780262526036: Boosting: Foundations and Algorithms (Adaptive Computation and Machine Learning series)

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

About the Author :

Robert E. Schapire is Professor of Computer Science at Princeton University. Yoav Freund is Professor of Computer Science at the University of California, San Diego. For their work on boosting, Freund and Schapire received both the Gödel Prize in 2003 and the Kanellakis Theory and Practice Award in 2004.

Review :

Robert Schapire and Yoav Freund made a huge impact in machine and statistical learning with their invention of boosting, which has survived the test of time. There have been lively discussions about alternative explanations of why it works so well, and the jury is still out. This well-balanced book from the 'masters' covers boosting from all points of view, and gives easy access to the wealth of research that this field has produced.

(Trevor Hastie, Statistics Department, Stanford University)

Boosting has provided a platform for thinking about and designing machine learning algorithms for over 20 years. The simple and elegant idea behind boosting is a 'Mirror of Erised' that researchers view from many different perspectives. This book beautifully ties together these views, using the same limpid style found in Robert Schapire and Yoav Freund's original research papers. It's an important resource for machine learning research.

(John Lafferty, University of Chicago and Carnegie Mellon University)

An outstanding text, which provides an authoritative, self-contained, broadly accessible and very readable treatment of boosting methods, a widely applied family of machine learning algorithms pioneered by the authors. It nicely covers the spectrum from theory through methodology to applications.

(Peter Bartlett, University of California, Berkeley)

Boosting is an amazing machine learning algorithm of 'intelligence' with much success in practice. It allows a weak learner to adapt to the data at hand and become 'strong'; it seamlessly integrates statistical estimation and computation. In this book, Robert Schapire and Yoav Freund, two inventors of the field, present multiple, fascinating views of boosting to explain why and how it works.

(Bin Yu, University of California, Berkeley)

This excellent book is a mind-stretcher that should be read and reread, even by nonspecialists.

(Computing Reviews)

Boosting is, quite simply, one of the best-written books I've read on machine learning...

(The Bactra Review)

For those who wish to work in the area, it is a clear and insightful view of the subject that deserves a place in the canon of machine learning and on the shelves of those who study it.

(Giles Hooker Journal of the American Statistical Association)

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Meilleurs résultats de recherche sur AbeBooks

1.

Robert E. Schapire; Yoav Freund
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Quantité : 5
Vendeur
GreatBookPrices
(Columbia, MD, Etats-Unis)
Evaluation vendeur
[?]

Description du livre État : New. N° de réf. du libraire 20281694-n

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 22,04
Autre devise

Ajouter au panier

Frais de port : EUR 2,26
Vers Etats-Unis
Destinations, frais et délais

2.

Robert E. Schapire
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Quantité : 1
Vendeur
Book Park
(Southfield, MI, Etats-Unis)
Evaluation vendeur
[?]

Description du livre État : New. Brand New Book. N° de réf. du libraire 0262526034BYR

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 24,37
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

3.

Robert E. Schapire, Yoav Freund
Edité par MIT Press Ltd, United States (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Paperback Quantité : 1
Vendeur
The Book Depository
(London, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre MIT Press Ltd, United States, 2014. Paperback. État : New. Language: English . Brand New Book. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate rules of thumb. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well.The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout. N° de réf. du libraire AAU9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 27,32
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

4.

Robert E. Schapire, Yoav Freund
Edité par MIT Press Ltd, United States (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Paperback Quantité : 1
Vendeur
The Book Depository US
(London, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre MIT Press Ltd, United States, 2014. Paperback. État : New. Language: English . Brand New Book. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate rules of thumb. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout. N° de réf. du libraire AAU9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 27,48
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

5.

Robert E. Schapire, Yoav Freund
Edité par MIT Press 2014-02-11 (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Paperback Quantité : 3
Vendeur
Chiron Media
(Wallingford, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre MIT Press 2014-02-11, 2014. Paperback. État : New. N° de réf. du libraire NU-GRD-05071692

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 25,10
Autre devise

Ajouter au panier

Frais de port : EUR 3,33
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

6.

Schapire, Robert E., Freund, Yoav
Edité par The MIT Press (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Couverture souple Quantité : 4
Evaluation vendeur
[?]

Description du livre The MIT Press, 2014. État : New. Series: Adaptive Computation and Machine Learning Series. Num Pages: 544 pages, 77 b&w illus. BIC Classification: UMB; UYA; UYQM. Category: (P) Professional & Vocational. Dimension: 181 x 230 x 24. Weight in Grams: 854. . 2014. Paperback. . . . . . N° de réf. du libraire V9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 28,53
Autre devise

Ajouter au panier

Frais de port : Gratuit
De Irlande vers Etats-Unis
Destinations, frais et délais

7.

Robert E. Schapire, Yoav Freund
Edité par MIT Press 2014-02-11, Cambridge, Mass. (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) paperback Quantité : 1
Vendeur
Blackwell's
(Oxford, OX, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre MIT Press 2014-02-11, Cambridge, Mass., 2014. paperback. État : New. N° de réf. du libraire 9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 25,24
Autre devise

Ajouter au panier

Frais de port : EUR 3,34
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

8.

Robert E. Schapire
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Quantité : 3
Vendeur
BooksForStudent
(West Bloomfield, MI, Etats-Unis)
Evaluation vendeur
[?]

Description du livre État : New. Brand New Book In Mint condition. Shipping with Trackable Method. No APO/FPO Addresses Please. N° de réf. du libraire 9780262526036NHS

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 29,42
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

9.

Schapire, Robert E., Freund, Yoav
Edité par The MIT Press
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Couverture souple Quantité : 4
Vendeur
Kennys Bookstore
(Olney, MD, Etats-Unis)
Evaluation vendeur
[?]

Description du livre The MIT Press. État : New. Series: Adaptive Computation and Machine Learning Series. Num Pages: 544 pages, 77 b&w illus. BIC Classification: UMB; UYA; UYQM. Category: (P) Professional & Vocational. Dimension: 181 x 230 x 24. Weight in Grams: 854. . 2014. Paperback. . . . . Books ship from the US and Ireland. N° de réf. du libraire V9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 29,72
Autre devise

Ajouter au panier

Frais de port : Gratuit
Vers Etats-Unis
Destinations, frais et délais

10.

Robert E. Schapire
Edité par MIT Press (2014)
ISBN 10 : 0262526034 ISBN 13 : 9780262526036
Neuf(s) Quantité : 4
Vendeur
Books2Anywhere
(Fairford, GLOS, Royaume-Uni)
Evaluation vendeur
[?]

Description du livre MIT Press, 2014. PAP. État : New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. N° de réf. du libraire BB-9780262526036

Plus d'informations sur ce vendeur | Poser une question au libraire

Acheter neuf
EUR 20,79
Autre devise

Ajouter au panier

Frais de port : EUR 10,04
De Royaume-Uni vers Etats-Unis
Destinations, frais et délais

autres exemplaires de ce livre sont disponibles

Afficher tous les résultats pour ce livre