Predicting Structured Data - Couverture souple

 
9780262528047: Predicting Structured Data

Synopsis

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.

Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field.

Contributors
Yasemin Altun, Gökhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daumé III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Pérez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schölkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Thomas Hofmann is a Director of Engineering at Google's Engineering Center in Zurich and Adjunct Associate Professor of Computer Science at Brown University.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780262026178: Predicting Structured Data

Edition présentée

ISBN 10 :  0262026171 ISBN 13 :  9780262026178
Editeur : The MIT Press, 2007
Couverture rigide