Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.
Key Features:
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Department of Computer Science, University of Florida.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Gratuit expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 10,99 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 108 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 35591977/2
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-TNF-9780367342906
Quantité disponible : 10 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Chengliang Yang, Department of Computer Science, University of Florida Chris Delcher, Institute of Child Health Policy, University of Florida Elizabeth Shenkman, Institute of Child Health Policy, University of Florida Sanjay Ranka, Depar. N° de réf. du vendeur 594574941
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 390536978
Quantité disponible : 3 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. 1st edition NO-PA16APR2015-KAP. N° de réf. du vendeur 26389062861
Quantité disponible : 3 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 107 pages. 10.00x7.25x0.50 inches. In Stock. N° de réf. du vendeur __0367342901
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18389062855
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. 419. N° de réf. du vendeur B9780367342906
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
Hardcover. Etat : new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780367342906
Quantité disponible : 1 disponible(s)
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. Health care utilization routinely generates vast amounts of data from sources ranging from electronic medical records, insurance claims, vital signs, and patient-reported outcomes. Predicting health outcomes using data modeling approaches is an emerging field that can reveal important insights into disproportionate spending patterns. This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges uniquely posed by this problem.Key Features:Introduces basic elements of health care data, especially for administrative claims data, including disease code, procedure codes, and drug codesProvides tailored supervised and unsupervised machine learning approaches for understanding and predicting the high utilizersPresents descriptive data driven methods for the high utilizer populationIdentifies a best-fitting linear and tree-based regression model to account for patients acute and chronic condition loads and demographic characteristics This book presents data driven methods, especially machine learning, for understanding and approaching the high utilizers problem, using the example of a large public insurance program. It describes important goals for data driven approaches from different aspects of the high utilizer problem, and identifies challenges posed by this problem. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9780367342906
Quantité disponible : 1 disponible(s)