Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation - Couverture souple

Livre 19 sur 151: Chapman & Hall/CRC Biostatistics

Tan, Ming T.; Tian, Guo-Liang; Ng, Kai Wang

 
9780367385309: Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation

Synopsis

This book presents solutions to missing data problems through explicit or noniterative sampling calculation of Bayesian posteriors, based on the inverse Bayes formulae. The authors focus on exact numerical solutions, a conditional sampling approach via data augmentation, and a noniterative sampling approach via EM-type algorithms. They describe Monte Carlo simulation, numerical techniques, and optimization methods. The book illustrates the methods with biostatistical models and real-world applications, including mixed effects and hierarchical models, nonresponse and contingency tables, and the constrained parameter problem reformulated as a missing data problem.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Ming T. Tan is Professor of Biostatistics in the Department of Epidemiology and Preventive Medicine at the University of Maryland School of Medicine and Director of the Division of Biostatistics at the University of Maryland Greenebaum Cancer Center.

Guo-Liang Tian is Associate Professor in the Department of Statistics and Actuarial Science at the University of Hong Kong.

Kai Wang Ng is Professor and Head of the Department of Statistics and Actuarial Science at the University of Hong Kong.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9781420077490: Bayesian Missing Data Problems: EM, Data Augmentation and Noniterative Computation

Edition présentée

ISBN 10 :  142007749X ISBN 13 :  9781420077490
Editeur : Chapman & Hall/CRC, 2009
Couverture rigide