Computational approaches to music composition and style imitation have engaged musicians, music scholars, and computer scientists since the early days of computing. Music generation research has generally employed one of two strategies: knowledge-based methods that model style through explicitly formalized rules, and data mining methods that apply machine learning to induce statistical models of musical style. The five chapters in this book illustrate the range of tasks and design choices in current music generation research applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. The contributions focus on different aspects of modeling and generating music, including melody, chord sequences, ornamentation, and dynamics. Models are induced from audio data or symbolic data. This book was originally published as a special issue of the Journal of Mathematics and Music.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
José M. Iñesta is a Professor in the Department of Software and Computing Systems at the Universidad de Alicante, Spain.
Darrell Conklin is a Professor in the Department of Computer Science and Artificial Intelligence at the University of the Basque Country.
Rafael Ramírez-Melendez is Associate Professor in the Music Technology Group in the Department of Information and Communication Technologies at the Universidad Pompeu Fabra, Barcelona, Spain.
Thomas M. Fiore is Associate Professor of Mathematics at the University of Michigan-Dearborn, MI, USA.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 122. N° de réf. du vendeur 381685060
Quantité disponible : 3 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 122. N° de réf. du vendeur 26381137563
Quantité disponible : 4 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 38730506
Quantité disponible : 10 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 122. N° de réf. du vendeur 18381137553
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 201. N° de réf. du vendeur B9780367892852
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 38730506-n
Quantité disponible : 10 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 122 pages. 9.68x6.85x0.28 inches. In Stock. N° de réf. du vendeur zk0367892855
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. N° de réf. du vendeur 594606914
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Neuware - This book illustrates the range of tasks and design choices in current music generation research, applying machine learning techniques and highlighting recurring research issues such as training data, music representation, candidate generation, and evaluation. This book was first published as a special issue of the Journal of Mathematics and. N° de réf. du vendeur 9780367892852
Quantité disponible : 2 disponible(s)