Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.
The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.
This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Osvaldo A. Martin is a Researcher at IMASL-CONICET in Argentina and the Department of Computer Science from Aalto University in Finland. He has a PhD in biophysics and structural bioinformatics. Over the years he has become increasingly interested in data analysis problems with a Bayesian flavor. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling.
Ravin Kumar is a Data Scientist at Google and previously worked at SpaceX and sweetgreen among other companies. He has an M.S in Manufacturing Engineering and a B.S in Mechanical Engineering. He found Bayesian statistics to be an excellent tool for modeling organizations and informing strategy. This interest in flexible statistical modeling led to a warm welcoming open source community which he is honored to be a member of now.
Junpeng Lao is a Data Scientist at Google. Prior to that he did his PhD and subsequently worked as a postdoc in Cognitive Neuroscience. He developed a fondness for Bayesian Statistics and generative modeling after working primarily with Bootstrapping and Permutation during his academic life.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Better World Books Ltd, Dunfermline, Royaume-Uni
Etat : Good. Ships from the UK. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 52604497-20
Quantité disponible : 1 disponible(s)
Vendeur : Feldman's Books, Menlo Park, CA, Etats-Unis
Hardcover. Etat : Fine. 1st Edition. N° de réf. du vendeur 045764
Quantité disponible : 1 disponible(s)
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
Hardcover. Etat : Fine. N° de réf. du vendeur mon0002914410
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 43660608-n
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
Hardcover. Etat : New. N° de réf. du vendeur 6666-TNFPD-9780367894368
Quantité disponible : 5 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory.The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics.This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries. Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780367894368
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 43660608-n
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 43660608
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580165700
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9780367894368
Quantité disponible : 5 disponible(s)