Hardcover
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3,51 expédition vers Etats-Unis
Destinations, frais et délaisEUR 6,09 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Parabolic Books, North East, MD, Etats-Unis
Hardcover. Etat : Fine. The book is like new. Very minor shelf wear to the cover. N° de réf. du vendeur ABE-1671630627558
Quantité disponible : 1 disponible(s)
Vendeur : ThriftBooks-Dallas, Dallas, TX, Etats-Unis
Hardcover. Etat : Very Good. No Jacket. May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.53. N° de réf. du vendeur G0387001522I4N00
Quantité disponible : 1 disponible(s)
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0387001522
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580170529
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387001524_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780387001524
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. About conformal prediction, which is a valuable new method of machine learningConformal predictors are among the most accurate methods of machine learning, and unlike other state-of-the-art methods, they provide information about their own accurac. N° de réf. du vendeur 5908815
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Neuware - Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness. N° de réf. du vendeur 9780387001524
Quantité disponible : 2 disponible(s)