The attraction of quantum computation and quantum communica- tion theory and experiments hes in the fact that we engineer both them themselves and the quantum systems they treat. This approach has turned out to be very resiUent. Driven by the final goal of calculating exponentially faster and communicating infinitely more securely than we do today, as soon as we encounter a limitation in either a theory or experiment, a new idea around the no-go emerges. As soon as the decoherence "demon" threatened the first computation models, quan- tum error correction theory was formulated and applied not only to computation theory but also to communication theory to make it un- conditionally secure. As soon as liquid-state nuclear magnetic resonance experiments started to approach their limits, solid-based nuclear spin experiments--the Kane computer--came in. As soon as it was proved that it is theoretically impossible to completely distinguish photon Bell states, three new approaches appeared: hyperentanglement, the use of continuous variables, and the Knill-Laflamme-Milburn proposal. There are many more such examples. What facilitated all these breakthroughs is the fact that at the present stage of development of quantum computation and communication, we deal with elementary quantum systems consisting of several two-level systems. The complexity of handling and controlHng such simple sys- tems in a laboratory has turned out to be tremendous, but the basic physical models we follow and calculate for the systems themselves are not equally intricate.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 17,41 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Discusses both theoretical and experimental aspects of quantum computation and quantum communicationExcellent introduction for new researchers and a good overview for existing specialistsThe field of quantum computing has experienced rapid. N° de réf. du vendeur 5909390
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The field of quantum computing has experienced rapid development and many different experimental and theoretical groups have emerged worldwide.This book presents the key elements of quantum computation and communication theories and their implementation in an easy-to-read manner for readers coming from physics, mathematics and computer science backgrounds. Integrating both theoretical aspects and experimental verifications of developing quantum computers, the author explains why particular mathematical methods, physical models and realistic implementations might provide critical steps towards achieving the final goal - constructing quantum computers and quantum networks. The book serves as an excellent introduction for new researchers and also provides a useful review for specialists in the field. 244 pp. Englisch. N° de réf. du vendeur 9780387244129
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -The attraction of quantum computation and quantum communica tion theory and experiments hes in the fact that we engineer both them themselves and the quantum systems they treat. This approach has turned out to be very resiUent. Driven by the final goal of calculating exponentially faster and communicating infinitely more securely than we do today, as soon as we encounter a limitation in either a theory or experiment, a new idea around the no-go emerges. As soon as the decoherence 'demon' threatened the first computation models, quan tum error correction theory was formulated and applied not only to computation theory but also to communication theory to make it un conditionally secure. As soon as liquid-state nuclear magnetic resonance experiments started to approach their limits, solid-based nuclear spin experiments¿the Kane computer¿came in. As soon as it was proved that it is theoretically impossible to completely distinguish photon Bell states, three new approaches appeared: hyperentanglement, the use of continuous variables, and the Knill-Laflamme-Milburn proposal. There are many more such examples. What facilitated all these breakthroughs is the fact that at the present stage of development of quantum computation and communication, we deal with elementary quantum systems consisting of several two-level systems. The complexity of handling and controlHng such simple sys tems in a laboratory has turned out to be tremendous, but the basic physical models we follow and calculate for the systems themselves are not equally intricate.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch. N° de réf. du vendeur 9780387244129
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387244129_new
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The attraction of quantum computation and quantum communica tion theory and experiments hes in the fact that we engineer both them themselves and the quantum systems they treat. This approach has turned out to be very resiUent. Driven by the final goal of calculating exponentially faster and communicating infinitely more securely than we do today, as soon as we encounter a limitation in either a theory or experiment, a new idea around the no-go emerges. As soon as the decoherence 'demon' threatened the first computation models, quan tum error correction theory was formulated and applied not only to computation theory but also to communication theory to make it un conditionally secure. As soon as liquid-state nuclear magnetic resonance experiments started to approach their limits, solid-based nuclear spin experiments-the Kane computer-came in. As soon as it was proved that it is theoretically impossible to completely distinguish photon Bell states, three new approaches appeared: hyperentanglement, the use of continuous variables, and the Knill-Laflamme-Milburn proposal. There are many more such examples. What facilitated all these breakthroughs is the fact that at the present stage of development of quantum computation and communication, we deal with elementary quantum systems consisting of several two-level systems. The complexity of handling and controlHng such simple sys tems in a laboratory has turned out to be tremendous, but the basic physical models we follow and calculate for the systems themselves are not equally intricate. N° de réf. du vendeur 9780387244129
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 4931369-n
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 550. N° de réf. du vendeur C9780387244129
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 4931369
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 244. N° de réf. du vendeur 26279301
Quantité disponible : 4 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 4931369-n
Quantité disponible : Plus de 20 disponibles