This book is an informal yet systematic presentation of lectures given by the author on Boolean algebras. The author's style is characteristically bold and fresh. He treats Boolean algebras, develops some intriguing ideas, and provides rare insights. Exercises are generously sprinkled through the text for course study. The second edition has been greatly expanded and rewritten, specific changes include:
* More detail explanations of the material in every section, making the text more accessible to undergraduates
* Three times as many exercises as well as a solutions manual
* A more careful explanation of the relationship between Boolean rings and Boolean algebras has been added;
* thirteen new chapters, including ones on topology and continuous functions and others on the extension theorem for homomorphisms, congruences and quotient algebras, lattice of ideals, and duality theory for products.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book is an informal, although systematic presentation of lectures given by the authors on Boolean algebras, intended for advanced undergraduates and beginning graduate students. In a bold and refreshing style, this book treats Boolean algebras, develops some intriguing ideas, and provides rare insights. Exercises are generously sprinkled throughout the text for course study. This book can be considered a sequel to Paul Halmos's Lectures on Boolean Algebras, with the following changes: (1) the material in every section has been explained in more detail, and is now more accessible to undergraduates; (2) there are three times as many exercises, and the authors have now prepared a solutions manual; (3) a more careful explanation of the relationship between Boolean rings and Boolean algebras has been added; (4) thirteen chapters have been added, including chapters on topology and on continuous functions, a chapter on the extension theorem for homomorphisms, a new chapter on congruences and quotient algebras, a chapter on the lattice of ideals, and a chapter on duality theory for products.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
hardcover. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_433665022
Quantité disponible : 1 disponible(s)
Vendeur : Bay State Book Company, North Smithfield, RI, Etats-Unis
Etat : good. The book is in good condition with all pages and cover intact, including the dust jacket if originally issued. The spine may show light wear. Pages may contain some notes or highlighting, and there might be a "From the library of" label. Boxed set packaging, shrink wrap, or included media like CDs may be missing. N° de réf. du vendeur BSM.UDT7
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 5845163
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580172278
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 5845163-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Antiquariat Smock, Freiburg, Allemagne
Etat : Sehr gut. Formateinband: Pappband / gebundene Ausgabe XIV, 574 S. (24,5 cm) Gebundene Ausgabe; 1st Edition; Sehr guter Zustand. Sprache: Englisch Gewicht in Gramm: 1200 [Stichwörter: Boolesche Algebra, Boolean Rings, Topology, Boolean measure spaces u.v.m.]. N° de réf. du vendeur 61828
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In English. N° de réf. du vendeur ria9780387402932_new
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 5845163-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 5845163
Quantité disponible : Plus de 20 disponibles
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Hardback. Etat : New. The theory of Boolean algebras was created in 1847 by the English mat- matician George Boole. He conceived it as a calculus (or arithmetic) suitable for a mathematical analysis of logic. The form of his calculus was rather di?erent from the modern version, which came into being during the - riod 1864-1895 through the contributions of William Stanley Jevons, Aug- tus De Morgan, Charles Sanders Peirce, and Ernst Schr. oder. A foundation of the calculus as an abstract algebraic discipline, axiomatized by a set of equations, and admitting many di?erent interpretations, was carried out by Edward Huntington in 1904. Only with the work of Marshall Stone and Alfred Tarski in the 1930s, however, did Boolean algebra free itself completely from the bonds of logic and become a modern mathematical discipline, with deep theorems and - portantconnections toseveral otherbranchesofmathematics, includingal- bra,analysis, logic, measuretheory, probability andstatistics, settheory, and topology. For instance, in logic, beyond its close connection to propositional logic, Boolean algebra has found applications in such diverse areas as the proof of the completeness theorem for ?rst-order logic, the proof of the Lo ' s conjecture for countable ?rst-order theories categorical in power, and proofs of the independence of the axiom of choice and the continuum hypothesis ? in set theory. In analysis, Stone's discoveries of the Stone-Cech compac- ?cation and the Stone-Weierstrass approximation theorem were intimately connected to his study of Boolean algebras. N° de réf. du vendeur LU-9780387402932
Quantité disponible : Plus de 20 disponibles