Articles liés à A Posteriori Error Analysis Via Duality Theory

A Posteriori Error Analysis Via Duality Theory - Couverture souple

 
9780387503424: A Posteriori Error Analysis Via Duality Theory

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems. An error estimate is called a posteriori if the computed solution is used in assessing its accuracy. A posteriori error estimation is central to m- suring, controlling and minimizing errors in modeling and numerical appr- imations. In this book, the main mathematical tool for the developments of a posteriori error estimates is the duality theory of convex analysis, documented in the well-known book by Ekeland and Temam ([49]). The duality theory has been found useful in mathematical programming, mechanics, numerical analysis, etc. The book is divided into six chapters. The first chapter reviews some basic notions and results from functional analysis, boundary value problems, elliptic variational inequalities, and finite element approximations. The most relevant part of the duality theory and convex analysis is briefly reviewed in Chapter 2.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Review

From the reviews:

"The subject of this book is the a posterior error analysis for mathematical idealizations in applied boundary value problems (BVPs) ... . A very nice book, well structured and written, coupling mathematical theory and numerical results and tests for applied problems." (Viorel Arnautu, Zentralblatt MATH, Vol. 1081, 2006)

"I believe that this book is the first book to present a systematical study in applying the duality theory to deriving a posteriori error estimates for a variety of interesting problems. ... The book is very well written. ... this nice book is quite easy to follow. I believe that the book will be very useful for researchers and graduate students in applied and computational mathematics and engineering." (Wen Bin Liu, Mathematical Reviews, Issue 2005 k)

From the Back Cover

This volume provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear variational problems. The author avoids giving the results in the most general, abstract form so that it is easier for the reader to understand more clearly the essential ideas involved. Many examples are included to show the usefulness of the derived error estimates.

Audience

This volume is suitable for researchers and graduate students in applied and computational mathematics, and in engineering.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9780387235363: A Posteriori Error Analysis Via Duality Theory: With Applications in Modeling and Numerical Approximations

Edition présentée

ISBN 10 :  0387235361 ISBN 13 :  9780387235363
Editeur : Springer-Verlag New York Inc., 2004
Couverture rigide