This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 14,95 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Allemagne
gebundene Ausgabe. Etat : Gut. 2. Auflage;. 680 Seiten Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber und kann entsprechende Merkmale aufweisen (Rückenschild, Instituts-Stempel.). In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 1120. N° de réf. du vendeur 2157588
Quantité disponible : 1 disponible(s)
Vendeur : Attic Books (ABAC, ILAB), London, ON, Canada
Hardcover. Etat : As new. Second Edition. Springer Series in Statistics. xiv, 680, [1] p. 24 cm. 115 figures. Yellow hardcover. Topics: the dynamic linear model; DLM theory; polynomial trend, seasonal, regression, autoregression, and related models; multi-process models; non-linear dynamic models; exponential family dynamic models; multivariate modelling and forecasting; distribution theory and linear algebra; etc. Bibliography and index. N° de réf. du vendeur 116416
Quantité disponible : 1 disponible(s)
Vendeur : Studibuch, Stuttgart, Allemagne
hardcover. Etat : Gut. 696 Seiten; 9780387947259.3 Gewicht in Gramm: 2. N° de réf. du vendeur 912849
Quantité disponible : 1 disponible(s)
Vendeur : Reader's Corner, Inc., Raleigh, NC, Etats-Unis
Hardcover. Etat : As New. No Jacket. 2nd Edition. This is a fine, as new, hardcover second edition copy, no DJ, pale brown spine. N° de réf. du vendeur 103792
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1150grams, ISBN:9780387947259. N° de réf. du vendeur 5845159
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of. N° de réf. du vendeur 5912159
Quantité disponible : Plus de 20 disponibles
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1200grams, ISBN:9780387947259. N° de réf. du vendeur 4138256
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti c, and socio-economic elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers. 700 pp. Englisch. N° de réf. du vendeur 9780387947259
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In English. N° de réf. du vendeur ria9780387947259_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti c, and socio-economic elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 700 pp. Englisch. N° de réf. du vendeur 9780387947259
Quantité disponible : 2 disponible(s)