This book presents a development of invariant manifold theory for a spe- cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec- ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man- ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 188 | Sprache: Englisch | Produktart: Bücher. N° de réf. du vendeur 538402/202
Quantité disponible : 2 disponible(s)
Vendeur : Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Allemagne
Originalpappband. Etat : Wie neu. First edition. VIII, 170 S. : graph. Darst. ; 24 cm In EXCELLENT shape. We offer a lot of books on PHYSICS and MATHEMATICS on stock in EXCELLENT shape). Sprache: Englisch Gewicht in Gramm: 505. N° de réf. du vendeur 307446
Quantité disponible : 1 disponible(s)
Vendeur : The Book Bin, Salem, OR, Etats-Unis
Hardcover. Etat : As New. Like New, light shelf wear. N° de réf. du vendeur CORV-BBC-0K02215
Quantité disponible : 1 disponible(s)
Vendeur : Bingo Books 2, Vancouver, WA, Etats-Unis
Hardcover. Etat : Fine. 1st Edition. HRDBACK BOOK IN FINE CONDITION. N° de réf. du vendeur 129059
Quantité disponible : 1 disponible(s)
Vendeur : J. HOOD, BOOKSELLERS, ABAA/ILAB, Baldwin City, KS, Etats-Unis
Hardcover. 170pp. As new, clean, tight & bright condition without dust jacket as published. N° de réf. du vendeur 199481
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. - Presents detailed and pedagogic proofs - The authors techniques can be applied to a broad class of infinite dimensional dynamical systems - Stephen Wiggins has authored many successful Springer titles and is the editor of Springers Journal of Nonlinear Sc. N° de réf. du vendeur 5912256
Quantité disponible : Plus de 20 disponibles
Vendeur : Sutton Books, Norwich, VT, Etats-Unis
Hardcover. Etat : Fine. Hbk 170pp no dj as issued laminated boards prev owner's inscrn on fep otherwise excellent clean tight unmarked as new. N° de réf. du vendeur HPS215-B
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The nonlinear Schroedinger (NLS) equation is a fundamental nonlinear partial differential equation (PDE) that arises in many areas and engineering, e.g. in plasma physics, nonlinear waves, and nonlinear optics. It is an example of a completely integrable PDE where phase space structure is known in some detail. In this monograph the authors present detailed and pedagogic proofs of persistence theorems for normally hyperbolic invariant manifolds and their stable and unstable manifolds for classes of perturbations of the NLS equation. The existence and persistence of fibrations of these invariant manifolds is also proved. The authors' techniques are based on an infinite dimensional generalization of the graph transform and can be viewed as an infinite dimensional generalization of Fenichel's results. This book also shows that the authors' techniques are quite general and can be applied to a broad class of infinite dimensional dynamical systems. 188 pp. Englisch. N° de réf. du vendeur 9780387949253
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387949253_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This book presents a development of invariant manifold theory for a spe cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. N° de réf. du vendeur 9780387949253
Quantité disponible : 2 disponible(s)