This book is a genetic introduciton to algebraic number theory which follows the development of the subject in the work of Fermat, Kummer and others, motivating new ideas and techniques by explaining the problems which led to their creation. The central problem is the one indicated in the title, but many other basic questions of algebraic number thoery are also treated.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 16,28 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Better World Books: West, Reno, NV, Etats-Unis
Etat : Good. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 51665446-75
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This introduction to algebraic number theory via the famous problem of Fermats Last Theorem follows its historical development, beginning with the work of Fermat and ending with Kummers theory of ideal factorization. The more elementary topics, such as . N° de réf. du vendeur 5912284
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book. 432 pp. Englisch. N° de réf. du vendeur 9780387950020
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387950020_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. Neuware -This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 432 pp. Englisch. N° de réf. du vendeur 9780387950020
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introduction to algebraic number theory via the famous problem of 'Fermat's Last Theorem.' The exposition follows the historical development of the problem, beginning with the work of Fermat and ending with Kummer's theory of 'ideal' factorization, by means of which the theorem is proved for all prime exponents less than 37. The more elementary topics, such as Euler's proof of the impossibilty of x+y=z, are treated in an elementary way, and new concepts and techniques are introduced only after having been motivated by specific problems. The book also covers in detail the application of Kummer's ideal theory to quadratic integers and relates this theory to Gauss' theory of binary quadratic forms, an interesting and important connection that is not explored in any other book. N° de réf. du vendeur 9780387950020
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 671902-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Moe's Books, Berkeley, CA, Etats-Unis
Soft cover. Etat : Very good. No jacket. Good, clean condition. N° de réf. du vendeur 1121943
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 671902-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 432. N° de réf. du vendeur 26287076
Quantité disponible : 4 disponible(s)