There has been much demand for the statistical analysis of dependent ob- servations in many fields, for example, economics, engineering and the nat- ural sciences. A model that describes the probability structure of a se- ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process- es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d- ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal- ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo- metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Universitätsbuchhandlung Herta Hold GmbH, Berlin, Allemagne
24 cm. XVII, 661 S. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Stamped. Springer series in statistics. N° de réf. du vendeur 617CB
Quantité disponible : 1 disponible(s)
Vendeur : Feldman's Books, Menlo Park, CA, Etats-Unis
Hardcover. Etat : Fine. 1st Edition. Inscribed And Autographed By Masanobu. Signed by Author(s). N° de réf. du vendeur 045839
Quantité disponible : 1 disponible(s)
Vendeur : GoldBooks, Denver, CO, Etats-Unis
Etat : new. N° de réf. du vendeur 6X57_55_0387950397
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580174327
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387950396_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, includi. N° de réf. du vendeur 5912300
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes. 684 pp. Englisch. N° de réf. du vendeur 9780387950396
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Asymptotic Theory of Statistical Inference for Time Series | Yoshihide Kakizawa (u. a.) | Buch | xvii | Englisch | 2000 | Springer | EAN 9780387950396 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 105790201
Quantité disponible : 5 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 684 pp. Englisch. N° de réf. du vendeur 9780387950396
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 684. N° de réf. du vendeur 26287010
Quantité disponible : 4 disponible(s)