In various fields of science, notably in physics and biology, one is con- fronted with periodic phenomena having a remarkable temporal structure: it is as if certain systems are periodically reset in an initial state. A paper of Van der Pol in the Philosophical Magazine of 1926 started up the investigation of this highly nonlinear type of oscillation for which Van der Pol coined the name "relaxation oscillation". The study of relaxation oscillations requires a mathematical analysis which differs strongly from the well-known theory of almost linear oscillations. In this monograph the method of matched asymptotic expansions is employed to approximate the periodic orbit of a relaxation oscillator. As an introduction, in chapter 2 the asymptotic analysis of Van der Pol's equation is carried out in all detail. The problem exhibits all features characteristic for a relaxation oscillation. From this case study one may learn how to handle other or more generally formulated relaxation oscillations. In the survey special attention is given to biological and chemical relaxation oscillators. In chapter 2 a general definition of a relaxation oscillation is formulated.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_380085488
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-82839
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-86397
Quantité disponible : 1 disponible(s)
Vendeur : SMASS Sellers, IRVING, TX, Etats-Unis
Etat : New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. N° de réf. du vendeur ASNT3-82839
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580174799
Quantité disponible : Plus de 20 disponibles
Vendeur : Gwyn Tudur Davies, Aberystwyth, Royaume-Uni
Soft cover. Etat : Fine. No Jacket. Pbk, xiii, 221 p.Contents : 1. Introduction -- 1.1 The Van der Pol oscillator -- 1.2 Mechanical prototypes of relaxation oscillators -- 1.3 Relaxation oscillations in physics and biology -- 1.4 Discontinuous approximations -- 1.5 Matched asymptotic expansions -- 1.6 Forced oscillations -- 1.7 Mutual entrainment -- 2 Free oscillation -- 2.1 Autonomous relaxation oscillation: definition and existence -- 2.2 Asymptotic solution of the Van der Pol equation -- 2.3 The Volterra-Lotka equations -- 2.4 Chemical oscillations -- 2.5 Bifurcation of the Van der Pol equation with a constant forcing term -- 2.6 Stochastic and chaotic oscillations -- 3. Forced oscillation and mutual entrainment -- 3.1 Modeling coupled oscillations -- 3.2 A rigorous theory for weakly coupled oscillators -- 3.3 Coupling of two oscillators -- 4. The Van der Pol oscillator with a sinusoidal forcing term -- 4.1 Qualitative methods of analysis -- 4.2 Asymptotic solution of the Van der Pol equation with a moderate forcing term -- 4.2 Asymptotic solution of the Van der Pol equation with a large forcing term -- 4.3 Asymptotic solution of the Van der Pol equation with a large forcing term -- Appendices -- A: Asymptotics of some special functions -- B: Asymptotic ordering and expansions -- C: Concepts of the theory of dynamical systems -- D: Stochastic differential equations and diffusion approximations [Mathematical physics - Theoretical, Mathematical and Computational Physics. Asymptotic expansions - Differential equations, Nonlinear Asymptotic theory - Oscillations - Mathematical physics] r1090 / m16709. N° de réf. du vendeur 016709
Quantité disponible : 1 disponible(s)
Vendeur : West Coast Bookseller, Moorpark, CA, Etats-Unis
paperback. Etat : As New. N° de réf. du vendeur H5-5-30BB
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387965130_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In various fields of science, notably in physics and biology, one is con fronted with periodic phenomena having a remarkable temporal structure: it is as if certain systems are periodically reset in an initial state. A paper of Van der Pol in the Philosophical Magazine of 1926 started up the investigation of this highly nonlinear type of oscillation for which Van der Pol coined the name 'relaxation oscillation'. The study of relaxation oscillations requires a mathematical analysis which differs strongly from the well-known theory of almost linear oscillations. In this monograph the method of matched asymptotic expansions is employed to approximate the periodic orbit of a relaxation oscillator. As an introduction, in chapter 2 the asymptotic analysis of Van der Pol's equation is carried out in all detail. The problem exhibits all features characteristic for a relaxation oscillation. From this case study one may learn how to handle other or more generally formulated relaxation oscillations. In the survey special attention is given to biological and chemical relaxation oscillators. In chapter 2 a general definition of a relaxation oscillation is formulated. 240 pp. Englisch. N° de réf. du vendeur 9780387965130
Quantité disponible : 2 disponible(s)
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
kartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 240 Seiten Englisch 346g. N° de réf. du vendeur 482309
Quantité disponible : 1 disponible(s)