Part 1 is devoted to a detailed review of the basic results concerning Palm probabilities and useful to Queueing Theory. Part 2 features the queueing formulae of all kinds, the existence of stationary states, and the insensitivity theory.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Part 1 is devoted to a detailed review of the basic results concerning Palm probabilities and useful to Queueing Theory. Part 2 features the queueing formulae of all kinds, the existence of stationary states, and the insensitivity theory.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 21,74 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Zubal-Books, Since 1961, Cleveland, OH, Etats-Unis
Etat : Fine. *Price HAS BEEN REDUCED by 10% until Monday, June 23 (SALE ITEM)* First edition, first printing, 106 pp., softcover, fine. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. N° de réf. du vendeur ZB1268357
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two proper. N° de réf. du vendeur 5912760
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387965147_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. N° de réf. du vendeur 9780387965147
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems. 120 pp. Englisch. N° de réf. du vendeur 9780387965147
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Tables of Contents.- 1. Stationary point processes and Palm probabilities.- 1. Stationary marked point processes.- 1.1. The canonical space of point processes on IR.- 1.2. Stationary point processes.- 1.3. Stationary marked point processes.- 1.4. Two properties of stationary point processes.- 2. Intensity.- 2.1. Intensity of a stationary point process.- 2.2. Intensity measure of a stationary marked point process.- 3. Palm probability.- 3.1. Mecke¿ s definition.- 3.2. Invariance of the Palm probability.- 3.3. Campbell¿ s formula.- 3.4. The exchange formula (or cycle formula) and Wald¿ s equality.- 4. From Palm probability to stationary probability.- 4.1. The inversion formula.- 4.2. Feller¿ s paradox.- 4.3. The mean value formulae.- 4.4. The inverse construction.- 5. Examples.- 5.1. Palm probability of a superposition of independent point processes.- 5.2. Palm probability associated with selected marks.- 5.3. Palm probability of selected transitions of a Markov chain.- 6. Local aspects of Palm probability.- 6.1. Korolyuk and Dobrushin¿ s infinitesimal estimates.- 6.2. Conditioning at a point.- 7. Characterization of Poisson processes.- 7.1. Predictable -fields.- 7.2. Stochastic intensity and Radon-Nikodym derivatives.- 7.3. Palm view at Watanabe¿ s characterization theorem.- 8. Ergodicity of point processes.- 8.1. Invariant events.- 8.2. Ergodicity under the stationary probability and its Palm probability.- 8.3. The cross ergodic theorem.- References for Part 1: Palm probabilities.- 2. Stationary queueuing systems.- 1. The G/G/1/ queue : construction of the customer stationary state.- 1.1. Loynes¿ problem.- 1.2. Existence of a finite stationary load.- 1.3. Uniqueness of the stationary load.- 1.4. Construction points.- 1.5. Initial workload and long term behaviour.- 2. Formulae for the G/G/1/ queue.- 2.1. Construction of the time-stationary workload.- 2.2. Little¿ s formulae: the FIFO case.- 2.3. Probability of emptiness.- 2.4. Takacs formulae.- 3. The G/G/s/ queue.- 3.1. The ordered workload vector.- 3.2. Existence of a finite stationary workload vector.- 3.3. Construction points.- 3.4. The busy cycle formulae.- 4. The G/G/1/0 queue.- 4.1. Definition and examples.- 4.2. Construction of an enriched probability space.- 4.3. Construction of a stationary solution.- 5. Other queueing systems.- 5.1. The G/G/ pure delay system.- 5.2. The G/G/1/ queue in random environment.- 5.3. Priorities in G/G/1/ : the vector of residual service times.- 5.4. Optimality properties of the SPRT rule.- 6. The Bedienungssysteme.- 6.1. The mechanism and the input.- 6.2. A heuristic description of the dynamics.- 6.3. The initial generalized state.- 6.4. The evolution.- 6.5. Examples.- 7. The insensitivity balance equations.- 7.1. Stability and regularity assumptions.- 7.2. Insensitivity balance equations.- 7.3. Examples.- 7.4. Assumption on the input.- 7.5. Two immediate consequences of the insensitivity balance equations.- 8. The insensitivity theorem.- 8.1. The Palm version.- 8.2. From Palm to stationary.- 8.3. The stationary version and Matthes product form.- 9. Insensitivity balance equations are necessary for insensitivity.- 9.1. The converse theorem.- 9.2. The method of stages.- 9.3. Proof of the converse theorem.- 9.4. Example.- 10. Poisson streams.- 10.1. Privileged transitions.- 10.2. Sufficient conditions for Poissonian streams.- 1. Change of scale.- 2. Proof of insensitivity.- 3. The transition marks.- 4. Proof of (8.3.5).- 5. Proof of (9.1.3).- 6. Proof of the converse theorem in the general case.- References for part 2: Stationary queueing systems. N° de réf. du vendeur 9780387965147
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 120. N° de réf. du vendeur 263871789
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 120 Illus. N° de réf. du vendeur 5024754
Quantité disponible : 1 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 235. N° de réf. du vendeur C9780387965147
Quantité disponible : Plus de 20 disponibles
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 120. N° de réf. du vendeur 183871783
Quantité disponible : 1 disponible(s)