A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments, which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies to randomly stopped processes and unbiased estimation. The authors then proceed with the theory of decoupling in full generality, paying special attention to comparison and interplay between martingale and decoupling theory, and to applications. These include limit theorems, moment and exponential inequalities for martingales and more general dependence structures, biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. Addressed to researchers in probability and statistics and to graduates, the expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 32,15 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Arches Bookhouse, Portland, OR, Etats-Unis
Hardcover. Etat : VERY GOOD. N° de réf. du vendeur 504054
Quantité disponible : 1 disponible(s)
Vendeur : Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Etats-Unis
Hardcover. Etat : Very Good-. Sunning and creasing to spine, crimped corner, owner sticker on front free endpaper, otherwise text clean and solid; no dust jacket ; Probability And Its Applications; 8vo 8" - 9" tall; 407 pages. N° de réf. du vendeur 234702
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond|A friendly and systematic introduction to the theory and applications of decoupling Special emphasis is given to the comparison and interplay between martingale and decoupling theo. N° de réf. du vendeur 5913407
Quantité disponible : Plus de 20 disponibles
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0387986162
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling. 412 pp. Englisch. N° de réf. du vendeur 9780387986166
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780387986166_new
Quantité disponible : Plus de 20 disponibles
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decouplingSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 412 pp. Englisch. N° de réf. du vendeur 9780387986166
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 672685-n
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 672685-n
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling. N° de réf. du vendeur 9780387986166
Quantité disponible : 1 disponible(s)