Diophantine Geometry: An Introduction - Couverture souple

Hindry, Marc

 
9780387989815: Diophantine Geometry: An Introduction

Synopsis

Diophantine geometry is the study of integral and rational solutions to systems of polynomial equations using ideas and techniques from algebraic number theory and algebraic geometry. The ultimate goal is to describe the solutions in terms of geometric invariants of the underlying algebraic variety. This book contains complete proofs of four of the fundamental finiteness theorems in Diophantine geometry: • The Mordell-Weil theorem - The group of rational points on an Abelian variety is finitely generated • Roth's theorem - An algebraic number has finitely many approximations of order 2+r • Siegel's theorem - An affine curve of genus at least one has finitely many integral points • Faltings' theorem (Mordell conjecture) - A curve of genus at least two has finitely many rational points Also included are a lengthy overview (with sketched or omitted proofs) of algebraic geometry, a detailed development of the theory of height functions, a discussion of further results and open problems, numerous exercises, and a comprehensive index.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Marc Hindry is Professor of Mathematics at Université Paris 7 (Denis Diderot). Joseph H. Silverman is Professor of Mathematics at Brown University and the author of several books, including The Arithmetic of Elliptic Curves and Advanced Topics in the Arithmetic of Elliptic Curves.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780387989754: Diophantine Geometry: An Introduction

Edition présentée

ISBN 10 :  0387989757 ISBN 13 :  9780387989754
Editeur : Springer-Verlag New York Inc., 2000
Couverture rigide