Mining Biomedical Text, Images and Visual Features for Information Retrieval provides broad coverage of the concepts, themes, and instrumentalities of the important, evolving area of biomedical text, images, and visual features towards information retrieval. The book aims to encourage an even wider adoption of IR methods for assisting in problem-solving and to stimulate research that may lead to additional innovations in this area of research. Topics covered include Internet of Things for health informatics; data privacy; smart healthcare; medical image processing; 3D medical images; evolutionary computing; deep learning; medical ontology; linguistic indexing; lexical analysis; and domain specific semantic categories in biomedical applications. This is a valuable resource for researchers and graduate students who are interested to learn more about data mining techniques to improve their research work.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Sujata Dash holds the position of Professor at the Information Technology School of Engineering and Technology, Nagaland University, Dimapur Campus, Nagaland, India, bringing more than three decades of dedicated service in teaching and mentoring students. She has been honoured with the prestigious Titular Fellowship from the Association of Commonwealth Universities, United Kingdom. As a testament to her global contributions, she served as a visiting professor in the Computer Science Department at the University of Manitoba, Canada. With a prolific academic record, she has authored over 200 technical papers published in esteemed international journals, and conference proceedings, and edited book chapters by reputed publishers Serving as a reviewer and Associate Editor for approximately 15 international journals.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 11,43 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 500 pages. 9.21x7.50x1.30 inches. In Stock. N° de réf. du vendeur __044315452X
Quantité disponible : 2 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 450. N° de réf. du vendeur B9780443154522
Quantité disponible : Plus de 20 disponibles
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur A9BNYDQFOF
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26396474216
Quantité disponible : 3 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Mining Biomedical Text, Images and Visual Features for Information Retrieval provides broad coverage of the concepts, themes, and instrumentalities of the important, evolving area of biomedical text, images, and visual features towards information retrieval. The book aims to encourage an even wider adoption of IR methods for assisting in problem-solving and to stimulate research that may lead to additional innovations in this area of research. Topics covered include Internet of Things for health informatics; data privacy; smart healthcare; medical image processing; 3D medical images; evolutionary computing; deep learning; medical ontology; linguistic indexing; lexical analysis; and domain specific semantic categories in biomedical applications. This is a valuable resource for researchers and graduate students who are interested to learn more about data mining techniques to improve their research work. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780443154522
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 399902903
Quantité disponible : 3 disponible(s)