Quantum Process Algebra introduces readers to the algebraic properties and laws for quantum computing. The book provides readers with all aspects of algebraic theory for quantum computing, including the basis of semantics and axiomatization for quantum computing. With the assumption of a quantum system, readers will learn to solve the modelling of the three main components in a quantum system: unitary operator, quantum measurement, and quantum entanglement, with full support of quantum and classical computing in closed systems. Next, the book establishes the relationship between probabilistic quantum bisimilarity and classical probabilistic bisimilarity, including strong probabilistic bisimilarity and weak probabilistic bisimilarity, which makes an axiomatization of quantum processes possible. With this framework, quantum and classical computing mixed processes are unified with the same structured operational semantics. Finally, the book establishes a series of axiomatizations of quantum process algebras. These process algebras support nearly all main computation properties. Quantum and classical computing in closed quantum systems are unified with the same equational logic and the same structured operational semantics under the framework of ACP-like probabilistic process algebra. This unification means that the mathematics in the book can be used widely for verification of quantum and classical computing mixed systems, for example, most quantum communication protocols. ACP-like axiomatization also inherits the advantages of ACP, for example, and modularity means that it can be extended in an elegant way.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Dr. Yong Wang is an Associate Professor of Computer Science and Technology, Faculty of Information, at Beijing University of Technology. He holds a PhD in Computer Science from Beihang University, China. He has more than 20 years of research and teaching experience in parallel and distributed computing. Dr. Wang's research interests include Theory of Parallel Computing, including algebraic theory for true concurrency and its extensions and applications, algebraic theory for reversible computing, and quantum process algebra and its application in quantum communication protocol. Dr. Wang's other research interests include SOA, grid computing, cloud computing, and big data. Dr. Wang has published more than 120 research papers in leading Computer Science journals, including Wiley-Blackwell International Journal of Communication Systems, Springer International Journal of Theoretical Physics, and IEEE Transactions on Network and Service Management.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 17,45 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 10,49 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 410524342
Quantité disponible : 3 disponible(s)
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur DNETVD18TM
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 450 pages. 9.25x7.50x10.87 inches. In Stock. N° de réf. du vendeur __0443275130
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26403678569
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 49970143-n
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Quantum Process Algebra introduces readers to the algebraic properties and laws for quantum computing. The book provides readers with all aspects of algebraic theory for quantum computing, including the basis of semantics and axiomatization for quantum computing. With the assumption of a quantum system, readers will learn to solve the modelling of the three main components in a quantum system: unitary operator, quantum measurement, and quantum entanglement, with full support of quantum and classical computing in closed systems. Next, the book establishes the relationship between probabilistic quantum bisimilarity and classical probabilistic bisimilarity, including strong probabilistic bisimilarity and weak probabilistic bisimilarity, which makes an axiomatization of quantum processes possible. With this framework, quantum and classical computing mixed processes are unified with the same structured operational semantics. Finally, the book establishes a series of axiomatizations of quantum process algebras. These process algebras support nearly all main computation properties. Quantum and classical computing in closed quantum systems are unified with the same equational logic and the same structured operational semantics under the framework of ACP-like probabilistic process algebra. This unification means that the mathematics in the book can be used widely for verification of quantum and classical computing mixed systems, for example, most quantum communication protocols. ACP-like axiomatization also inherits the advantages of ACP, for example, and modularity means that it can be extended in an elegant way. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780443275135
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18403678563
Quantité disponible : 3 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 49970143
Quantité disponible : 1 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. 2025. paperback. . . . . . N° de réf. du vendeur V9780443275135
Quantité disponible : 3 disponible(s)
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Paperback. Etat : new. Paperback. Quantum Process Algebra introduces readers to the algebraic properties and laws for quantum computing. The book provides readers with all aspects of algebraic theory for quantum computing, including the basis of semantics and axiomatization for quantum computing. With the assumption of a quantum system, readers will learn to solve the modelling of the three main components in a quantum system: unitary operator, quantum measurement, and quantum entanglement, with full support of quantum and classical computing in closed systems. Next, the book establishes the relationship between probabilistic quantum bisimilarity and classical probabilistic bisimilarity, including strong probabilistic bisimilarity and weak probabilistic bisimilarity, which makes an axiomatization of quantum processes possible. With this framework, quantum and classical computing mixed processes are unified with the same structured operational semantics. Finally, the book establishes a series of axiomatizations of quantum process algebras. These process algebras support nearly all main computation properties. Quantum and classical computing in closed quantum systems are unified with the same equational logic and the same structured operational semantics under the framework of ACP-like probabilistic process algebra. This unification means that the mathematics in the book can be used widely for verification of quantum and classical computing mixed systems, for example, most quantum communication protocols. ACP-like axiomatization also inherits the advantages of ACP, for example, and modularity means that it can be extended in an elegant way. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780443275135
Quantité disponible : 1 disponible(s)