Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application delves into tree-structured methods in the industrial sector, encompassing classical ensemble learning, tree-structured deep forest classification, and broad learning systems with neural networks. It introduces an innovative deep/broad learning algorithm for small-sample industrial modeling tasks. The book is divided into two parts: methodology and practical application in dioxin emission modeling. Methodology sections include Preliminaries, Deep Forest Regression, Broad Forest Regression, and Fuzzy Forest Regression. The application part focuses on modeling dioxin emissions in municipal solid waste incineration. Throughout, various tree-structured strategies are presented, and the authors provide software systems for validating these methods. This book is suitable for advanced undergraduates, graduate engineering students, and practicing engineers looking for self-study resources.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Wen Yu received the B.S. degree from Tsinghua University, Beijing, China in 1990 and the M.S. and Ph.D. degrees, both in Electrical Engineering, from Northeastern University, Shenyang, China, in 1992 and 1995, respectively. Since 1996, he has been with the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico, where he is currently a professor and department chair of the Automatic Control Department. From 2002 to 2003, he held research positions with the Mexican Institute of Petroleum. He was a Senior Visiting Research Fellow with Queen's University Belfast, Belfast, U.K., from 2006 to 2007, and a Visiting Associate Professor with the University of California, Santa Cruz, from 2009 to 2010. He gas published more than 100 research papers in reputed journals. His Google Scholar h-index is 33, the citation number is 4100. He serves as associate editors of IEEE Transactions on Cybernetics, Neurocomputing, and Journal of Intelligent and Fuzzy Systems. He is a member of the Mexican Academy of Sciences.
Jian Tang received a Ph.D. degree in control theory and control engineering from Northeastern University, China, in 2012. He is currently a Professor with the Faculty of Information Technology, Beijing University of Technology, Beijing, China. His current research interests include machine learning based on small sample data, intelligent modeling and control of complex industrial process, digital twin system of municipal solid waste incineration process.
Junfei Qiao received B.S. and M.S. degrees in control engineering from Liaoning Technical University, China, in 1992 and 1995, respectively, and a Ph.D. degree in control theory and control engineering from Northeastern University, China, in 1998. He is currently a Professor with the Faculty of Information Technology, Beijing University of Technology, China. His current research interests include neural networks, intelligent systems, and modeling and optimal control of complex industrial processes.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur VW2INKIWRG
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. N° de réf. du vendeur 409617818
Quantité disponible : 3 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. N° de réf. du vendeur 26404617797
Quantité disponible : 3 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 250 pages. 9.00x6.00x9.02 inches. In Stock. N° de réf. du vendeur __0443315647
Quantité disponible : 2 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. N° de réf. du vendeur 18404617807
Quantité disponible : 3 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. Small Sample Modelling Based on Deep and Broad Forest Regression: Theory and Industrial Application delves into tree-structured methods in the industrial sector, encompassing classical ensemble learning, tree-structured deep forest classification, and broad learning systems with neural networks. It introduces an innovative deep/broad learning algorithm for small-sample industrial modeling tasks. The book is divided into two parts: methodology and practical application in dioxin emission modeling. Methodology sections include Preliminaries, Deep Forest Regression, Broad Forest Regression, and Fuzzy Forest Regression. The application part focuses on modeling dioxin emissions in municipal solid waste incineration. Throughout, various tree-structured strategies are presented, and the authors provide software systems for validating these methods. This book is suitable for advanced undergraduates, graduate engineering students, and practicing engineers looking for self-study resources. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780443315640
Quantité disponible : 1 disponible(s)