Articles liés à Dimensionality Reduction in Machine Learning

Dimensionality Reduction in Machine Learning - Couverture souple

 
9780443328183: Dimensionality Reduction in Machine Learning

Synopsis

Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.

Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos des auteurs

Dr. Jamal Amani Rad currently works in Choice Modelling Centre and Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK He obtained his PhD in Mathematics at the Department of Mathematics at University of Shahid Beheshti. His research interests include modelling, numerics, and analysis of partial differential equations by using meshless methods, with an emphasis on applications from finance.



Dr. Snehashish Chakraverty is a Senior Professor in the Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, with over 30 years of teaching and research experience. A gold medalist from the University of Roorkee (now IIT Roorkee), he earned his Ph.D. from IIT Roorkee and completed post-doctoral work at the University of Southampton (UK) and Concordia University (Canada). He has also served as a visiting professor in Canada and South Africa. Dr. Chakraverty has authored/edited 38 books and published over 495 research papers. His research spans differential equations (ordinary, partial, fractional), numerical and computational methods, structural and fluid dynamics, uncertainty modeling, and soft computing techniques. He has guided 27 Ph.D. scholars, with 10 currently under his supervision.

He has led 16 funded research projects and hosted international researchers through prestigious fellowships. Recognized in the top 2% of scientists globally (Stanford-Elsevier list, 2020-2024), he has received numerous awards including the CSIR Young Scientist Award, BOYSCAST Fellowship, INSA Bilateral Exchange, and IOP Top Cited Paper Awards. He is Chief Editor of International Journal of Fuzzy Computation and Modelling and serves on several international editorial boards.



Dr. Kourosh Parand is a Professor in International Business University, Toronto, Canada . His main research field is Scientific Computing, Spectral Methods, Meshless methods, Ordinary Differential Equations (ODEs), Partial Differential Equations(PDEs) and Computational Neuroscience Modeling.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Comme neuf
Unread book in perfect condition...
Afficher cet article
EUR 185,05

Autre devise

EUR 17,17 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 162,53

Autre devise

EUR 17,17 expédition depuis Etats-Unis vers France

Destinations, frais et délais

Résultats de recherche pour Dimensionality Reduction in Machine Learning

Image fournie par le vendeur

Chakraverty, Snehashish (EDT); Parand, Kourosh (EDT)
Edité par Morgan Kaufmann, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur 48395122-n

Contacter le vendeur

Acheter neuf

EUR 162,53
Autre devise
Frais de port : EUR 17,17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Chakraverty, Snehashish (Editor)/ Parand, Kourosh (Editor)
Edité par Morgan Kaufmann Pub, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock. N° de réf. du vendeur __0443328188

Contacter le vendeur

Acheter neuf

EUR 168,69
Autre devise
Frais de port : EUR 11,55
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Rad Ph.D., Jamal Amani
Edité par Morgan Kaufmann, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Couverture souple
impression à la demande

Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : new. Questo è un articolo print on demand. N° de réf. du vendeur 12VVN3IRDV

Contacter le vendeur

Acheter neuf

EUR 149,64
Autre devise
Frais de port : EUR 40
De Italie vers France
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image d'archives

Snehashish Chakraverty
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Paperback

Vendeur : CitiRetail, Stevenage, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780443328183

Contacter le vendeur

Acheter neuf

EUR 165,94
Autre devise
Frais de port : EUR 28,87
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Chakraverty, Snehashish (EDT); Parand, Kourosh (EDT)
Edité par Morgan Kaufmann, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Ancien ou d'occasion Couverture souple

Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 48395122

Contacter le vendeur

Acheter D'occasion

EUR 185,05
Autre devise
Frais de port : EUR 17,17
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Rad,jamal Amani
Edité par Morgan Kaufmann, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Couverture souple

Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur V9780443328183

Contacter le vendeur

Acheter neuf

EUR 204,91
Autre devise
Frais de port : EUR 3
De Irlande vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Chakraverty, Snehashish (Editor)/ Parand, Kourosh (Editor)
Edité par Morgan Kaufmann Pub, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Paperback

Vendeur : Revaluation Books, Exeter, Royaume-Uni

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock. N° de réf. du vendeur x-0443328188

Contacter le vendeur

Acheter neuf

EUR 236,05
Autre devise
Frais de port : EUR 11,55
De Royaume-Uni vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Snehashish Chakraverty
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Paperback

Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Paperback. Etat : new. Paperback. Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780443328183

Contacter le vendeur

Acheter neuf

EUR 189,11
Autre devise
Frais de port : EUR 64,41
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jamal Amani Rad
Edité par Elsevier Science Feb 2025, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Taschenbuch

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Taschenbuch. Etat : Neu. Neuware - Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. N° de réf. du vendeur 9780443328183

Contacter le vendeur

Acheter neuf

EUR 247,94
Autre devise
Frais de port : EUR 10,99
De Allemagne vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image d'archives

Rad,jamal Amani
Edité par Morgan Kaufmann, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Neuf Couverture souple

Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : New. N° de réf. du vendeur V9780443328183

Contacter le vendeur

Acheter neuf

EUR 257,13
Autre devise
Frais de port : EUR 2,71
De Etats-Unis vers France
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier