A fundamental property of permutability is expressed in the following theorem: Two functions permutable with a third are permutable with each other. A group of permutable functions is characterized by a function of the first order of which the first and second partial derivatives exist and are finite. Consequently when we consider a group of permutable functions, we shall always assume that there is known to us a function of the first order which has finite derivatives of the first and second orders and belongs to the group. This function shall be spoken of as the fundamental function of the group. When a fundamental function of the group has the canonical form, we shall speak of the group as a canonical group. A remarkable group of permutable functions is the so-called closed-cycle group, which is made up of functions of the form f(y-x). Unity belongs to this group, and it is deduced immediately.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. A fundamental property of permutability is expressed in the following theorem: Two functions permutable with a third are permutable with each other. A group of permutable functions is characterized by a function of the first order of which the first and second partial derivatives exist and are finite. Consequently when we consider a group of permutable functions, we shall always assume that there is known to us a function of the first order which has finite derivatives of the first and second orders and belongs to the group. This function shall be spoken of as the fundamental function of the group. When a fundamental function of the group has the canonical form, we shall speak of the group as a canonical group. A remarkable group of permutable functions is the so-called closed-cycle group, which is made up of functions of the form f(y-x). Unity belongs to this group, and it is deduced immediately. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780464679578
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. Print on Demand. N° de réf. du vendeur I-9780464679578
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2215580216908
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
PAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9780464679578
Quantité disponible : Plus de 20 disponibles
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. N° de réf. du vendeur L0-9780464679578
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 74 pages. 9.02x5.98x0.15 inches. In Stock. N° de réf. du vendeur x-0464679575
Quantité disponible : 2 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9780464679578
Quantité disponible : 10 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Paperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. N° de réf. du vendeur C9780464679578
Quantité disponible : Plus de 20 disponibles
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Paperback. Etat : new. Paperback. A fundamental property of permutability is expressed in the following theorem: Two functions permutable with a third are permutable with each other. A group of permutable functions is characterized by a function of the first order of which the first and second partial derivatives exist and are finite. Consequently when we consider a group of permutable functions, we shall always assume that there is known to us a function of the first order which has finite derivatives of the first and second orders and belongs to the group. This function shall be spoken of as the fundamental function of the group. When a fundamental function of the group has the canonical form, we shall speak of the group as a canonical group. A remarkable group of permutable functions is the so-called closed-cycle group, which is made up of functions of the form f(y-x). Unity belongs to this group, and it is deduced immediately. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9780464679578
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Paperback. Etat : new. Paperback. A fundamental property of permutability is expressed in the following theorem: Two functions permutable with a third are permutable with each other. A group of permutable functions is characterized by a function of the first order of which the first and second partial derivatives exist and are finite. Consequently when we consider a group of permutable functions, we shall always assume that there is known to us a function of the first order which has finite derivatives of the first and second orders and belongs to the group. This function shall be spoken of as the fundamental function of the group. When a fundamental function of the group has the canonical form, we shall speak of the group as a canonical group. A remarkable group of permutable functions is the so-called closed-cycle group, which is made up of functions of the form f(y-x). Unity belongs to this group, and it is deduced immediately. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780464679578
Quantité disponible : 1 disponible(s)