An accessible and self-contained introduction to statistical models-now in a modernized new edition
Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.
A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features:
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Charles E. McCulloch, PhD, is Professor and Head of the Division of Biostatistics in the School of Medicine at the University of California, San Francisco. A Fellow of the American Statistical Association, Dr. McCulloch is the author of numerous published articles in the areas of longitudinal data analysis, generalized linear mixed models, and latent class models and their applications.
Shayle R. Searle, PhD, is Professor Emeritus in the Department of Biological Statistics and Computational Biology at Cornell University. Dr. Searle is the author of Linear Models, Linear Models for Unbalanced Data, Matrix Algebra Useful for Statistics, and Variance Components, all published by Wiley.
John M. Neuhaus, PhD, is Professor of Biostatistics in the School of Medicine at the University of California, San Francisco. A Fellow of the American Statistical Association and the Royal Statistical Society, Dr. Neuhaus has authored or coauthored numerous journal articles on statistical methods for analyzing correlated response data and assessments on the effects of statistical model misspecification.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 3,42 expédition vers Etats-Unis
Destinations, frais et délaisEUR 3,42 expédition vers Etats-Unis
Destinations, frais et délaisVendeur : Textbooks_Source, Columbia, MO, Etats-Unis
hardcover. Etat : Good. 2nd Edition. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). N° de réf. du vendeur 000837343U
Quantité disponible : 2 disponible(s)
Vendeur : Textbooks_Source, Columbia, MO, Etats-Unis
hardcover. Etat : New. 2nd Edition. Ships in a BOX from Central Missouri! UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). N° de réf. du vendeur 000837343N
Quantité disponible : 1 disponible(s)
Vendeur : Toscana Books, AUSTIN, TX, Etats-Unis
Hardcover. Etat : new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. N° de réf. du vendeur Scanned0470073713
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. N° de réf. du vendeur 4224498-5
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. N° de réf. du vendeur 4224498-5
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 4224498
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 4224498-n
Quantité disponible : 1 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. An accessible and self-contained introduction to statistical models-now in a modernized new edition Generalized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects. A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed models is maintained throughout, and each chapter illustrates how these models are applicable in a wide array of contexts. In addition, a discussion of general methods for the analysis of such models is presented with an emphasis on the method of maximum likelihood for the estimation of parameters. The authors also provide comprehensive coverage of the latest statistical models for correlated, non-normally distributed data. Thoroughly updated to reflect the latest developments in the field, the Second Edition features: A new chapter that covers omitted covariates, incorrect random effects distribution, correlation of covariates and random effects, and robust variance estimationA new chapter that treats shared random effects models, latent class models, and properties of modelsA revised chapter on longitudinal data, which now includes a discussion of generalized linear models, modern advances in longitudinal data analysis, and the use between and within covariate decompositionsExpanded coverage of marginal versus conditional modelsNumerous new and updated examples With its accessible style and wealth of illustrative exercises, Generalized, Linear, and Mixed Models, Second Edition is an ideal book for courses on generalized linear and mixed models at the upper-undergraduate and beginning-graduate levels. It also serves as a valuable reference for applied statisticians, industrial practitioners, and researchers. - This new edition presents a unified, accessible, and self-contained treatment of the latest statistical methods for analyzing correlated, non-normally distributed data. - The book's unified treatment addresses the needs of applications-oriented users of statistical packages and also graduate students in statistics. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780470073711
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 4224498-n
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780470073711_new
Quantité disponible : Plus de 20 disponibles