The only handbook of mathematical relations with a focus on particulate materials processing
The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. However, currently there is no organized reference book to help the particulate materials community with sorting out various relations. This book fills that important need, providing readers with a quick-reference handbook for easy consultation.
This one-of-a-kind handbook gives readers the relevant mathematical relations needed to model behavior, generate computer simulations, analyze experiment data, and quantify physical and chemical phenomena commonly found in particulate materials processing. It goes beyond the traditional barriers of only one material class by covering the major areas in ceramics, cemented carbides, powder metallurgy, and particulate materials. In many cases, the governing equations are the same but the terms are material-specific. To rise above these differences, the authors have assembled the basic mathematics around the following topical structure:
Powder technology relations, such as those encountered in atomization, milling, powder production, powder characterization, mixing, particle packing, and powder testing
Powder processing, such as uniaxial compaction, injection molding, slurry and paste shaping techniques, polymer pyrolysis, sintering, hot isostatic pressing, and forging, with accompanying relations associated with microstructure development and microstructure coarsening
Finishing operations, such as surface treatments, heat treatments, microstructure analysis, material testing, data analysis, and structure-property relations
Handbook of Mathematical Relations in Particulate Materials Processing is suited for quick reference with stand-alone definitions, making it the perfect complement to existing resources used by academic researchers, corporate product and process developers, and various scientists, engineers, and technicians working in materials processing.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Randall M. German, PhD, is the CAVS Chair Professor of Mechanical Engineering and Director of the Center for Advanced Vehicular Systems at Mississippi State University. He holds an Honorary Doctorate from the Universidad Carlos III de Madrid in Spain, is a Fellow of APMI and ASM, holds the Tesla Medal, and is listed in various issues of Who's Who. His accomplishments comprise 850 published articles, twenty-three issued patents, nineteen edited proceedings, and fourteen books, including Sintering Theory and Practice (Wiley).
Seong Jin Park, PhD, is Associate Research Professor in the Center for Advanced Vehicular Systems at Mississippi State University. He is the recipient of numerous awards and honors, including Leading Scientists of the World and Outstanding Scientists Worldwide, both awarded by the International Biographical Centre in 2007. Dr. Park is the author of over 190 published articles and three books, holds four patents, and created four commercialized software programs. His areas of specialization and interest include materials processing technology, numerical technology, and physics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 5109861-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLING22Oct1916240147545
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. The only handbook of mathematical relations with a focus on particulate materials processing The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. However, currently there is no organized reference book to help the particulate materials community with sorting out various relations. This book fills that important need, providing readers with a quick-reference handbook for easy consultation. This one-of-a-kind handbook gives readers the relevant mathematical relations needed to model behavior, generate computer simulations, analyze experiment data, and quantify physical and chemical phenomena commonly found in particulate materials processing. It goes beyond the traditional barriers of only one material class by covering the major areas in ceramics, cemented carbides, powder metallurgy, and particulate materials. In many cases, the governing equations are the same but the terms are material-specific. To rise above these differences, the authors have assembled the basic mathematics around the following topical structure: Powder technology relations, such as those encountered in atomization, milling, powder production, powder characterization, mixing, particle packing, and powder testing Powder processing, such as uniaxial compaction, injection molding, slurry and paste shaping techniques, polymer pyrolysis, sintering, hot isostatic pressing, and forging, with accompanying relations associated with microstructure development and microstructure coarsening Finishing operations, such as surface treatments, heat treatments, microstructure analysis, material testing, data analysis, and structure-property relations Handbook of Mathematical Relations in Particulate Materials Processing is suited for quick reference with stand-alone definitions, making it the perfect complement to existing resources used by academic researchers, corporate product and process developers, and various scientists, engineers, and technicians working in materials processing. The only handbook of mathematical relations with a focus on particulate materials processing The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780470173640
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 5109861-n
Quantité disponible : 5 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. xxxiii + 419 Illus. N° de réf. du vendeur 7492580
Quantité disponible : 3 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. New copy - Usually dispatched within 4 working days. N° de réf. du vendeur B9780470173640
Quantité disponible : Plus de 20 disponibles
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. The only handbook of mathematical relations with a focus on particulate materials processing The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. Series: Wiley Series on Processing of Engineering Materials. Num Pages: 460 pages, Illustrations. BIC Classification: TBJ; TGM. Category: (P) Professional & Vocational. Dimension: 243 x 162 x 25. Weight in Grams: 768. . 2008. 1st Edition. Hardcover. . . . . N° de réf. du vendeur V9780470173640
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. The only handbook of mathematical relations with a focus on particulate materials processing The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. However, currently there is no organized reference book to help the particulate materials community with sorting out various relations. This book fills that important need, providing readers with a quick-reference handbook for easy consultation. This one-of-a-kind handbook gives readers the relevant mathematical relations needed to model behavior, generate computer simulations, analyze experiment data, and quantify physical and chemical phenomena commonly found in particulate materials processing. It goes beyond the traditional barriers of only one material class by covering the major areas in ceramics, cemented carbides, powder metallurgy, and particulate materials. In many cases, the governing equations are the same but the terms are material-specific. To rise above these differences, the authors have assembled the basic mathematics around the following topical structure: Powder technology relations, such as those encountered in atomization, milling, powder production, powder characterization, mixing, particle packing, and powder testing Powder processing, such as uniaxial compaction, injection molding, slurry and paste shaping techniques, polymer pyrolysis, sintering, hot isostatic pressing, and forging, with accompanying relations associated with microstructure development and microstructure coarsening Finishing operations, such as surface treatments, heat treatments, microstructure analysis, material testing, data analysis, and structure-property relations Handbook of Mathematical Relations in Particulate Materials Processing is suited for quick reference with stand-alone definitions, making it the perfect complement to existing resources used by academic researchers, corporate product and process developers, and various scientists, engineers, and technicians working in materials processing. The only handbook of mathematical relations with a focus on particulate materials processing The National Science Foundation estimates that over 35% of materials-related funding is now directed toward modeling. In part, this reflects the increased knowledge and the high cost of experimental work. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780470173640
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. xxxiii + 419. N° de réf. du vendeur 26388155
Quantité disponible : 3 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Randall M. German, PhD, is the CAVS Chair Professor of Mechanical Engineering and Director of the Center for Advanced Vehicular Systems at Mississippi State University. He holds an Honorary Doctorate from the Universidad Carlos III de Madrid in Spain, is a . N° de réf. du vendeur 446911871
Quantité disponible : Plus de 20 disponibles