Presented here is a detailed exposition of the general theory of measure and integration. The first half of the book demonstrates the power and efficacy of Caratheodory's method in obtaining general results in the subject most quickly and naturally. The author then establishes the need of inner measures and their importance for topological measure spaces and extension theory of measures beyond Caratheodory's approach. The lifting theorem, the capacity theory of Choquet's and topology through measure find a significant place in the exposition and their interrelations with other parts of the subject are included. Treated extensively are product measures and the Radon-Nikodym theory. Special attention is given to the motivation for each concept and to the general ideas behind most of the proofs, as well as detailed outlines of their execution. Exercises are also included.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Significantly revised and expanded, this authoritative reference/text comprehensively describes concepts in measure theory, classical integration, and generalized Riemann integration of both scalar and vector types-providing a complete and detailed review of every aspect of measure and integration theory using valuable examples, exercises, and applications.
With more than 170 references for further investigation of the subject, this Second Edition
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 12,22 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : Good. Former library book; may include library markings. Used book that is in clean, average condition without any missing pages. N° de réf. du vendeur 13184294-6
Quantité disponible : 1 disponible(s)