This book describes the basic algorithmic ideas behind accepted methods for computing with finitely presented groups.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Research in computational group theory, an active subfield of computational algebra, has emphasised three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. The author emphasises the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito and Miller on computing nonabelian polycyclic quotients is described as a generalisation of Buchberger's Gröbner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups and theoretical computer scientists will find this book useful.
"this book is a very interesting treatment of the computational aspects of combinatorial group theory. It is well-written, nicely illustrating the algorithms presented with many examples. Also, some remarks on the history of the field are included. In adition, many exercises are provided throughout...this is a very valuable book that is well-suited as a textbook for a graduate course on computational group theory. It addresses students of mahtematics and of computer science alike, providing the necessary background for both. In addition, this book will be of good use as a reference source for computational aspects of combinatorial group theory." Friedrich Otto, Mathematical Reviews
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,29 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisEUR 4,61 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. Clean from markings. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1050grams, ISBN:0521432138. N° de réf. du vendeur 9909167
Quantité disponible : 1 disponible(s)
Vendeur : Imaginal Books, Sardent, France
Hardcover. Etat : Very Good. Etat de la jaquette : Very Good. 1st Edition. N° de réf. du vendeur 000233
Quantité disponible : 1 disponible(s)
Vendeur : Moe's Books, Berkeley, CA, Etats-Unis
Hard cover. Etat : Very good. Etat de la jaquette : Very good. Bothe the book and jacket are in great condition with no visible flaws apart from some light handling wear. Binding is tight and inside is clean and unmarked. N° de réf. du vendeur 1141617
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521432139_new
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521432139
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 604 pages. 9.75x6.50x1.50 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521432138
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. It is a comprehensive text presenting the fundamental algorithmic ideas which have been developed to compute with finitely presented groups, discussing techniques for computing with finitely presented groups which are infinite, or at least not obviously fin. N° de réf. du vendeur 446935335
Quantité disponible : Plus de 20 disponibles
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Hardcover. Etat : new. Hardcover. Research in computational group theory, an active subfield of computational algebra, has emphasized three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. It is the first text to present the fundamental algorithmic ideas which have been developed to compute with finitely presented groups, discussing techniques for computing with finitely presented groups which are infinite, or at least not obviously finite, and describing methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito, and Miller on computing nonabelian polycyclic quotients is described as a generalization of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups, and theoretical computer scientists will find this book useful. The book describes methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connection with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, from computational number theory, and from computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms are used to study the Abelian quotients of a finitely presented group. The work of Baumslag, Cannonito, and Miller on computing non-Abelian polycyclic quotients is described as a generalization of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. N° de réf. du vendeur 9780521432139
Quantité disponible : 1 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Research in computational group theory, an active subfield of computational algebra, has emphasized three areas: finite permutation groups, finite solvable groups, and finitely presented groups. This book deals with the third of these areas. It is the first text to present the fundamental algorithmic ideas which have been developed to compute with finitely presented groups, discussing techniques for computing with finitely presented groups which are infinite, or at least not obviously finite, and describing methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connections with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, computational number theory, and computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms from computational number theory are used to study the abelian quotients of a finitely presented group. The work of Baumslag, Cannonito, and Miller on computing nonabelian polycyclic quotients is described as a generalization of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Researchers in computational group theory, mathematicians interested in finitely presented groups, and theoretical computer scientists will find this book useful. The book describes methods for working with elements, subgroups, and quotient groups of a finitely presented group. The author emphasizes the connection with fundamental algorithms from theoretical computer science, particularly the theory of automata and formal languages, from computational number theory, and from computational commutative algebra. The LLL lattice reduction algorithm and various algorithms for Hermite and Smith normal forms are used to study the Abelian quotients of a finitely presented group. The work of Baumslag, Cannonito, and Miller on computing non-Abelian polycyclic quotients is described as a generalization of Buchberger's Grobner basis methods to right ideals in the integral group ring of a polycyclic group. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780521432139
Quantité disponible : 1 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book describes the basic algorithmic ideas behind accepted methods for computing with finitely presented groups. N° de réf. du vendeur 9780521432139
Quantité disponible : 1 disponible(s)