This graduate textbook presents a concrete and up-to-date introduction to the theory of Coxeter groups. The book is self-contained, making it suitable either for courses and seminars or for self-study. The first part is devoted to establishing concrete examples. Finite reflection groups acting on Euclidean spaces are discussed, and the first part ends with the construction of the affine Weyl groups, a class of Coxeter groups that plays a major role in Lie theory. The second part (which is logically independent of, but motivated by, the first) develops from scratch the properties of Coxeter groups in general, including the Bruhat ordering and the seminal work of Kazhdan and Lusztig on representations of Hecke algebras associated with Coxeter groups is introduced. Finally a number of interesting complementary topics as well as connections with Lie theory are sketched. The book concludes with an extensive bibliography on Coxeter groups and their applications.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
James E. Humphreys was born in Erie, Pennsylvania, and received his A.B. from Oberlin College, 1961, and his Ph.D. from Yale University, 1966. He has taught at the University of Oregon, Courant Institute (NYU), and the University of Massachusetts at Amherst (now retired). He visits IAS Princeton, Rutgers. He is the author of several graduate texts and monographs.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Paperback. Etat : Good. Reprint. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience. N° de réf. du vendeur 0521436133-11-1
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190002817
Quantité disponible : Plus de 20 disponibles
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 696949-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. reprint edition. 216 pages. 9.25x6.00x0.50 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521436133
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : As New. Unread book in perfect condition. N° de réf. du vendeur 696949
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521436137
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 220. N° de réf. du vendeur 26437287
Quantité disponible : 1 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521436137_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. In this graduate textbook Professor Humphreys presents a concrete and up-to-date introduction to the theory of Coxeter groups. He assumes that the reader has a good knowledge of algebra, but otherwise the book is self contained. The first part is devoted to establishing concrete examples; the author begins by developing the most important facts about finite reflection groups and related geometry, and showing that such groups have a Coxeter representation. In the next chapter these groups are classified by Coxeter diagrams, and actual realizations of these groups are discussed. Chapter 3 discusses the polynomial invariants of finite reflection groups, and the first part ends with a description of the affine Weyl groups and the way they arise in Lie theory. The second part (which is logically independent of, but motivated by, the first) starts by developing the properties of the Coxeter groups. Chapter 6 shows how earlier examples and others fit into the general classification of Coxeter diagrams. Chapter 7 is based on the very important work of Kazhdan and Lusztig and the last chapter presents a number of miscellaneous topics of a combinatorial nature. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521436137
Quantité disponible : 1 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 220 2:B&W 6 x 9 in or 229 x 152 mm Perfect Bound on Creme w/Gloss Lam. N° de réf. du vendeur 7410680
Quantité disponible : 1 disponible(s)