A Mathematical Introduction to Wavelets - Couverture rigide

Wojtaszczyk, P.

 
9780521570206: A Mathematical Introduction to Wavelets

Synopsis

The only introduction to wavelets that doesn't avoid the tough mathematical questions.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

This book presents a mathematical introduction to the theory of orthogonal wavelets and their uses in analysing functions and function spaces, both in one and in several variables. Starting with a detailed and self contained discussion of the general construction of one dimensional wavelets from multiresolution analysis, the book presents in detail the most important wavelets: spline wavelets, Meyer's wavelets and wavelets with compact support. It then moves to the corresponding multivariable theory and gives genuine multivariable examples. Wavelet decompositions in Lp spaces, Hardy spaces and Besov spaces are discussed and wavelet characterisations of those spaces are provided. Also included are some additional topics like periodic wavelets or wavelets not associated with a multiresolution analysis. This will be an invaluable book for those wishing to learn about the mathematical foundations of wavelets.

Revue de presse

"...the book does cover the basic material in a well-organized manner and with detailed explanations about the construction of wavelets. A nice feature of the book is that it has more than a hundred exercises of various levels of difficulty...This monograph is a suitable textbook for an introductory course in modern Fourier analysis and wavelet theory." Rodolfo Torres, Mathematical Reviews, 98j

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780521578943: A Mathematical Introduction to Wavelets

Edition présentée

ISBN 10 :  0521578949 ISBN 13 :  9780521578943
Editeur : Cambridge University Press, 2010
Couverture souple