This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
'... will certainly benefit young researchers entering the described field.' Jan Cholewa, Zentralblatt MATH
'This impressive book offers an excellent, self-contained introduction to many important aspects of infinite-dimensional systems ... At the outset, the author states that his aim was to produce a didactic text suitable or first-year graduate students. Unquestionably he has achieved his goal. This book should prove invaluable to mathematicians wishing to gain some knowledge of the dynamical-systems approach to dissipative partial differential equations that has been developed during the past 20 years, and should be essential reading for any graduate student starting out on a PhD in this area.' W. Lamb, Proceedings of the Edinburgh Mathematical Society
'The book is written clearly and concisely. It is well structured, and the material is presented in a rigorous, coherent fashion. A number of example problems are treated, and each chapter is followed by a series of problems whose solutions are available on the internet. ... constitutes an excellent resource for researchers and advanced graduate students in applied mathematics, dynamical systems, nonlinear dynamics, and computational mechanics. Its acquisition by libraries is strongly recommended.' Applied Mechanics Reviews
This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : ZBK Books, Carlstadt, NJ, Etats-Unis
Etat : good. Fast & Free Shipping â" Good condition with a solid cover and clean pages. Shows normal signs of use such as light wear or a few marks highlighting, but overall a well-maintained copy ready to enjoy. Supplemental items like CDs or access codes may not be included. N° de réf. du vendeur ZWV.0521635640.G
Quantité disponible : 1 disponible(s)
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_403197505
Quantité disponible : 1 disponible(s)
Vendeur : Anybook.com, Lincoln, Royaume-Uni
Etat : Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,700grams, ISBN:9780521635646. N° de réf. du vendeur 3965300
Quantité disponible : 1 disponible(s)
Vendeur : Feldman's Books, Menlo Park, CA, Etats-Unis
Soft cover. Etat : Fine. 1st Edition. N° de réf. du vendeur 045767
Quantité disponible : 1 disponible(s)
Vendeur : GoldBooks, Denver, CO, Etats-Unis
Etat : new. N° de réf. du vendeur 39R49_34_0521635640
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEOCT25-100343
Quantité disponible : 1 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-140495
Quantité disponible : 1 disponible(s)
Vendeur : ALLBOOKS1, Direk, SA, Australie
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. N° de réf. du vendeur SHAK100343
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 480. N° de réf. du vendeur 26616887
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 700754-n
Quantité disponible : Plus de 20 disponibles