Written for graduate students, this book presents topics in 2-dimensional hyperbolic geometry. The authors begin with rigid motions in the plane which are used as motivation for a full development of hyperbolic geometry in the unit disk. The approach is to define metrics from an infinitesimal point of view; first the density is defined and then the metric via integration. The study of hyperbolic geometry in arbitrary domains requires the concepts of surfaces and covering spaces as well as uniformization and Fuchsian groups. These ideas are developed in the context of what is used later. The authors then provide a detailed discussion of hyperbolic geometry for arbitrary plane domains. New material on hyperbolic and hyperbolic-like metrics is presented. These are generalizations of the Kobayashi and Caratheodory metrics for plane domains. The book concludes with applications to holomorphic dynamics including new results and accessible open problems.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Linda Keen is a Professor of Mathematics at the City University of New York, Lehman College and the Graduate Center.
Nikola Lakic is an Associate Professor of Mathematics at the City University of New York, Lehman College and the Graduate Center.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
paperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! N° de réf. du vendeur S_451766990
Quantité disponible : 1 disponible(s)
Vendeur : WYEMART LIMITED, HEREFORD, Royaume-Uni
Paperback. Etat : New. N° de réf. du vendeur mon0000256628
Quantité disponible : 3 disponible(s)
Vendeur : Anytime Books, London, Royaume-Uni
Soft cover. Etat : Fine. A good and standard treatment. pp.x.271. N° de réf. du vendeur 012014
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Paperback. Etat : Brand New. 1st edition. 271 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __052168224X
Quantité disponible : 1 disponible(s)
Vendeur : GoldBooks, Denver, CO, Etats-Unis
Etat : new. N° de réf. du vendeur 46Y38_87_052168224X
Quantité disponible : 1 disponible(s)
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521682244
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521682244_new
Quantité disponible : Plus de 20 disponibles
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
kartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 271 Seiten, mit Abbildungen, Englisch 400g. N° de réf. du vendeur 360801
Quantité disponible : 1 disponible(s)
Vendeur : Chiron Media, Wallingford, Royaume-Uni
PF. Etat : New. N° de réf. du vendeur 6666-IUK-9780521682244
Quantité disponible : 10 disponible(s)
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Paperback. Etat : new. Paperback. Written for graduate students, this book presents topics in 2-dimensional hyperbolic geometry. The authors begin with rigid motions in the plane which are used as motivation for a full development of hyperbolic geometry in the unit disk. The approach is to define metrics from an infinitesimal point of view; first the density is defined and then the metric via integration. The study of hyperbolic geometry in arbitrary domains requires the concepts of surfaces and covering spaces as well as uniformization and Fuchsian groups. These ideas are developed in the context of what is used later. The authors then provide a detailed discussion of hyperbolic geometry for arbitrary plane domains. New material on hyperbolic and hyperbolic-like metrics is presented. These are generalizations of the Kobayashi and Caratheodory metrics for plane domains. The book concludes with applications to holomorphic dynamics including new results and accessible open problems. Written for graduate students, this book presents topics in 2-dimensional hyperbolic geometry. The authors begin with rigid motions in the plane which are used as motivation for a full development of hyperbolic geometry in the unit disk. The approach is to define metrics from an infinitesimal point of view; first the density is defined and then the metric via integration. The study of hyperbolic geometry in arbitrary domains requires the concepts of surfaces and covering spaces as well as uniformization and Fuchsian groups. These ideas are developed in the context of what is used later. The authors then provide a detailed discussion of hyperbolic geometry for arbitrary plane domains. New material on hyperbolic and hyperbolic-like metrics is presented. These are generalizations of the Kobayashi and Caratheodory metrics for plane domains. The book concludes with applications to holomorphic dynamics including new results and accessible open problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521682244
Quantité disponible : 1 disponible(s)