A 2007 graduate text on spectral methods with applications in fluid dynamics and engineering.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Jan Hesthaven is a Professor of Applied Mathematics at Brown University.
Sigal Gottlieb is an Associate Professor at the Department of Mathematics, University of Massachusetts, Dartmouth.
David Gottlieb is a Professor in the Division of Applied Mathematics, Brown University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 64,05 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,59 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521792110_new
Quantité disponible : Plus de 20 disponibles
Vendeur : KuleliBooks, Phoenix, AZ, Etats-Unis
hardcover. Etat : Good. The book may have minor cosmetic wear (i.e. creased spine/cover, scratches, curled corners, folded pages, minor sunburn, minor water damage, minor bent). The book may have some highlights/notes/underlined pages - Accessories such as CD, codes, toys, may not be included - Safe and Secure Mailer - No Hassle Return. N° de réf. du vendeur 521YH0000WR6
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 273 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521792118
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Spectral methods are useful techniques for solving integral and partial differential equations, many of which appear in fluid mechanics and engineering problems. Based on a graduate course, this 2007 book presents these popular and efficient techniques with. N° de réf. du vendeur 446947325
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 619. N° de réf. du vendeur C9780521792110
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521792110
Quantité disponible : Plus de 20 disponibles
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners. Spectral methods are useful techniques for solving integral and partial differential equations, many of which appear in fluid mechanics and engineering problems. Based on a graduate course, this 2007 book presents these popular and efficient techniques with both rigorous analysis and extensive coverage of their wide range of applications. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780521792110
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 284. N° de réf. du vendeur 26524960
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 284 Illus. N° de réf. du vendeur 8371583
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners. N° de réf. du vendeur 9780521792110
Quantité disponible : 1 disponible(s)