The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
George E. Andrews is Evan Pugh Professor of Mathematics at the Pennsylvania State University. He has been a Guggenheim Fellow, the Principal Lecturer at a Conference Board for the Mathematical Sciences meeting, and a Hedrick Lecturer for the MAA. Having published extensively on the theory of partitions and related areas, he has been formally recognized for his contribution to pure mathematics by several prestigious universities and is a member of the National Academy of Sciences (USA).
Kimmo Eriksson is Professor of Mathematics at Mälardalen University College, where he has served as the dean of the Faculty of Science and Technology. He has published in combinatorics, computational biology and game theory. He is also the author of several textbooks in discrete mathematics and recreational mathematics, and has received numerous prizes for excellence in teaching.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 12,78 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 4,73 expédition depuis Royaume-Uni vers France
Destinations, frais et délaisVendeur : Books From California, Simi Valley, CA, Etats-Unis
hardcover. Etat : Very Good. Cover and edges may have some wear. N° de réf. du vendeur mon0003744446
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780521841184_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together wi. N° de réf. du vendeur 446949936
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 152 58 Illus. N° de réf. du vendeur 7585045
Quantité disponible : 3 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 2nd edition. 152 pages. 9.25x6.25x0.50 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521841186
Quantité disponible : 1 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 152 2nd Revised Edition. N° de réf. du vendeur 26262858
Quantité disponible : 3 disponible(s)
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
Hardcover. Etat : Like New. Like New. book. N° de réf. du vendeur ERICA77305218411866
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 152. N° de réf. du vendeur 18262848
Quantité disponible : 3 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. The theory of integer partitions is a subject of enduring interest. A major research area in its own right, it has found numerous applications, and celebrated results such as the Rogers-Ramanujan identities make it a topic filled with the true romance of mathematics. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. The book has a short introduction followed by an initial chapter introducing Euler's famous theorem on partitions with odd parts and partitions with distinct parts. This is followed by chapters titled: Ferrers Graphs, The Rogers-Ramanujan Identities, Generating Functions, Formulas for Partition Functions, Gaussian Polynomials, Durfee Squares, Euler Refined, Plane Partitions, Growing Ferrers Boards, and Musings. The aim in this introductory textbook is to provide an accessible and wide ranging introduction to partitions, without requiring anything more of the reader than some familiarity with polynomials and infinite series. Many exercises are included, together with some solutions and helpful hints. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780521841184
Quantité disponible : 1 disponible(s)
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-0521841186
Quantité disponible : 1 disponible(s)