Explains new applications of the 'large sieve', an important tool of analytic number theory, presenting potential uses beyond this area.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Emmanuel Kowalski is Professor in the Departement Mathematik at ETH Zürich.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 138230
Quantité disponible : 7 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190020496
Quantité disponible : Plus de 20 disponibles
Vendeur : California Books, Miami, FL, Etats-Unis
Etat : New. N° de réf. du vendeur I-9780521888516
Quantité disponible : Plus de 20 disponibles
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Hardcover. Etat : new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. N° de réf. du vendeur 9780521888516
Quantité disponible : 1 disponible(s)
Vendeur : Revaluation Books, Exeter, Royaume-Uni
Hardcover. Etat : Brand New. 1st edition. 320 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand. N° de réf. du vendeur __0521888514
Quantité disponible : 1 disponible(s)
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 660. N° de réf. du vendeur C9780521888516
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. xxi + 293 Index. N° de réf. du vendeur 26416152
Quantité disponible : 4 disponible(s)
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Hardcover. Etat : new. Hardcover. Among the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realization that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. The 'large sieve', an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fields as wide ranging as topology, probability, arithmetic geometry and discrete group theory. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. N° de réf. du vendeur 9780521888516
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The large sieve , an important technical tool of analytic number theory, has advanced extensively in recent years. This book develops a general form of sieve inequality, and describes its varied, sometimes surprising applications, with potential uses in fi. N° de réf. du vendeur 446952370
Quantité disponible : Plus de 20 disponibles
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. xxi + 293 Illus. N° de réf. du vendeur 7464519
Quantité disponible : 4 disponible(s)