The first part of this monograph is devoted to a characterization of hypergeometric-like functions, that is, twists of hypergeometric functions in n-variables. These are treated as an (n+1) dimensional vector space of multivalued locally holomorphic functions defined on the space of n+3 tuples of distinct points on the projective line P modulo, the diagonal section of Auto P=m. For n=1, the characterization may be regarded as a generalization of Riemann's classical theorem characterizing hypergeometric functions by their exponents at three singular points.
This characterization permits the authors to compare monodromy groups corresponding to different parameters and to prove commensurability modulo inner automorphisms of PU(1,n).
The book includes an investigation of elliptic and parabolic monodromy groups, as well as hyperbolic monodromy groups. The former play a role in the proof that a surprising number of lattices in PU(1,2) constructed as the fundamental groups of compact complex surfaces with constant holomorphic curvature are in fact conjugate to projective monodromy groups of hypergeometric functions. The characterization of hypergeometric-like functions by their exponents at the divisors "at infinity" permits one to prove generalizations in n-variables of the Kummer identities for n-1 involving quadratic and cubic changes of the variable.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Pierre Deligne is a Permanent Member of the Department of Mathematics at the Institute for Advanced Study in Princeton. G. Daniel Mostow is Henry Ford II Professor of Mathematics at Yale University.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 42,87 expédition depuis Etats-Unis vers France
Destinations, frais et délaisEUR 17,50 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Book Bear, West Brookfield, MA, Etats-Unis
Hardcover. Etat : Good. No Jacket. 183 pp. Tightly bound. Text is free of markings. No ownership markings. No dust jacket. NOTE: The top right corner of the front board and the top page corners are bumped. N° de réf. du vendeur 031567
Quantité disponible : 1 disponible(s)
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
Etat : New. N° de réf. du vendeur 179428
Quantité disponible : 4 disponible(s)