Weil's Conjecture for Function Fields (1) - Couverture souple

Livre 190 sur 202: Annals of Mathematics Studies

Gaitsgory, Dennis; Lurie, Jacob

 
9780691182148: Weil's Conjecture for Function Fields (1)

Synopsis

A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ℓ-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.

Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

À propos de l?auteur

Dennis Gaitsgory is professor of mathematics at Harvard University. He is the coauthor of A Study in Derived Algebraic Geometry. Jacob Lurie is professor of mathematics at Harvard University. He is the author of Higher Topos Theory (Princeton).

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780691182131: Weil's Conjecture for Function Fields (1)

Edition présentée

ISBN 10 :  0691182132 ISBN 13 :  9780691182131
Editeur : Princeton University Press, 2019
Couverture rigide