This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled "Observational Tests of Inflation" held at the University of Durham, England on the 10th-14th December, 1990. In recent years, the cosmological inflation model has drawn together the worlds of particle physics, theoretical cosmology and observational astronomy. The aim of the workshop was to bring together experts in all of these fields to discuss the current status of the inflation theory and its observational predictions. The simplest inflation model makes clear predictions which are testable by astronomical observation. Foremost is the prediction that the cosmological density parameter, no, should have a value negligibly different from the critical, Einstein-de Sitter value of 00=1. The other main prediction is that the spectrum of primordial density fluctuations should be Gaussian and take the Harrison-Zeldovich form. The prediction that n =l, in patticular, leads to several important consequences o for cosmology. Firstly, there is the apparent contradiction with the limits on baryon density from Big Bang nucleosynthesis which has led to the common conjecture that weakly interacting particles rather than baryons may form the dominant mass constituent of the Universe. Secondly, with n =l, the age of the Universe is uncomfortably short if o the Hubble constant and the ages of the oldest star clusters lie within their currently believed limits.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Allemagne
gebundene Ausgabe. Etat : Gut. 483 Seiten Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber. Es befindet sich neben dem Rückenschild lediglich ein Bibliotheksstempel im Buch; ordnungsgemäß entwidmet. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 1020. N° de réf. du vendeur 2077922
Quantité disponible : 1 disponible(s)
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190180895
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780792314318_new
Quantité disponible : Plus de 20 disponibles
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Research Workshop on Observational Tests of Inflation, Durham, U.K., December 10-14, 1990 This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled Observational Tests of Inflatio. N° de réf. du vendeur 5966373
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled 'Observational Tests of Inflation' held at the University of Durham, England on the 10th-14th December, 1990. In recent years, the cosmological inflation model has drawn together the worlds of particle physics, theoretical cosmology and observational astronomy. The aim of the workshop was to bring together experts in all of these fields to discuss the current status of the inflation theory and its observational predictions. The simplest inflation model makes clear predictions which are testable by astronomical observation. Foremost is the prediction that the cosmological density parameter, no, should have a value negligibly different from the critical, Einstein-de Sitter value of 00=1. The other main prediction is that the spectrum of primordial density fluctuations should be Gaussian and take the Harrison-Zeldovich form. The prediction that n =l, in patticular, leads to several important consequences o for cosmology. Firstly, there is the apparent contradiction with the limits on baryon density from Big Bang nucleosynthesis which has led to the common conjecture that weakly interacting particles rather than baryons may form the dominant mass constituent of the Universe. Secondly, with n =l, the age of the Universe is uncomfortably short if o the Hubble constant and the ages of the oldest star clusters lie within their currently believed limits. 508 pp. Englisch. N° de réf. du vendeur 9780792314318
Quantité disponible : 2 disponible(s)
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Observational Tests of Cosmological Inflation | T. Shanks (u. a.) | Buch | xx | Englisch | 1991 | Springer Netherland | EAN 9780792314318 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 101953610
Quantité disponible : 5 disponible(s)
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Etat : New. Proceedings of the NATO Advanced Research Workshop on Observational Tests of Inflation, Durham, U.K., December 10-14, 1990 Editor(s): Shanks, T.; Banday, A. J.; Ellis, Richard S.; Frenk, Carlos S. Series: NATO Science Series C. Num Pages: 483 pages, biography. BIC Classification: PGK. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly. Dimension: 235 x 155 x 28. Weight in Grams: 885. . 1991. Hardback. . . . . N° de réf. du vendeur V9780792314318
Quantité disponible : 15 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled 'Observational Tests of Inflation' held at the University of Durham, England on the 10th-14th December, 1990. In recent years, the cosmological inflation model has drawn together the worlds of particle physics, theoretical cosmology and observational astronomy. The aim of the workshop was to bring together experts in all of these fields to discuss the current status of the inflation theory and its observational predictions. The simplest inflation model makes clear predictions which are testable by astronomical observation. Foremost is the prediction that the cosmological density parameter, no, should have a value negligibly different from the critical, Einstein-de Sitter value of 00=1. The other main prediction is that the spectrum of primordial density fluctuations should be Gaussian and take the Harrison-Zeldovich form. The prediction that n =l, in patticular, leads to several important consequences o for cosmology. Firstly, there is the apparent contradiction with the limits on baryon density from Big Bang nucleosynthesis which has led to the common conjecture that weakly interacting particles rather than baryons may form the dominant mass constituent of the Universe. Secondly, with n =l, the age of the Universe is uncomfortably short if o the Hubble constant and the ages of the oldest star clusters lie within their currently believed limits.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 508 pp. Englisch. N° de réf. du vendeur 9780792314318
Quantité disponible : 2 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 508 Index. N° de réf. du vendeur 26542703
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book represents the proceedings from the NATO sponsored Advanced Research Workshop entitled 'Observational Tests of Inflation' held at the University of Durham, England on the 10th-14th December, 1990. In recent years, the cosmological inflation model has drawn together the worlds of particle physics, theoretical cosmology and observational astronomy. The aim of the workshop was to bring together experts in all of these fields to discuss the current status of the inflation theory and its observational predictions. The simplest inflation model makes clear predictions which are testable by astronomical observation. Foremost is the prediction that the cosmological density parameter, no, should have a value negligibly different from the critical, Einstein-de Sitter value of 00=1. The other main prediction is that the spectrum of primordial density fluctuations should be Gaussian and take the Harrison-Zeldovich form. The prediction that n =l, in patticular, leads to several important consequences o for cosmology. Firstly, there is the apparent contradiction with the limits on baryon density from Big Bang nucleosynthesis which has led to the common conjecture that weakly interacting particles rather than baryons may form the dominant mass constituent of the Universe. Secondly, with n =l, the age of the Universe is uncomfortably short if o the Hubble constant and the ages of the oldest star clusters lie within their currently believed limits. N° de réf. du vendeur 9780792314318
Quantité disponible : 1 disponible(s)