X Köchendorffer, L.A. Kalu: lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of "sports-like" results were obtained. Some of these results are still unsurpassed.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This volume presents an authoritative collection of major survey papers on algebraic combinatorics which originally appeared in Russian, augmented by four survey papers written specially for this book.
The algebraic theory of combinatorial objects is the branch of mathematics that studies the relation between local properties of a combinatorial object and the global properties of its automorphism group.
The content is divided into three parts: the first deals with cellular rings; the second deals with distance-regular and distance-transitive graphs; and part 3 contains papers on the relatively new branch of amalgams and geometry.
For complex systems theorists; mathematicians interested in group theory and combinatorics.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190181110
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780792319276_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of 'sports-like' results were obtained. Some of these results are still unsurpassed. 526 pp. Englisch. N° de réf. du vendeur 9780792319276
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. X Koechendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this cen. N° de réf. du vendeur 5966625
Quantité disponible : Plus de 20 disponibles
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
Hardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 942. N° de réf. du vendeur C9780792319276
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 528. N° de réf. du vendeur 26541360
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of 'sports-like' results were obtained. Some of these results are still unsurpassed.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 526 pp. Englisch. N° de réf. du vendeur 9780792319276
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 528 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. N° de réf. du vendeur 8387951
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - X Köchendorffer, L.A. Kalu:lnin and their students in the 50s and 60s. Nowadays the most deeply developed is the theory of binary invariant relations and their combinatorial approximations. These combinatorial approximations arose repeatedly during this century under various names (Hecke algebras, centralizer rings, association schemes, coherent configurations, cellular rings, etc.-see the first paper of the collection for details) andin various branches of mathematics, both pure and applied. One of these approximations, the theory of cellular rings (cellular algebras), was developed at the end of the 60s by B. Yu. Weisfeiler and A.A. Leman in the course of the first serious attempt to study the complexity of the graph isomorphism problem, one of the central problems in the modern theory of combinatorial algorithms. At roughly the same time G.M. Adelson-Velskir, V.L. Arlazarov, I.A. Faradtev and their colleagues had developed a rather efficient tool for the constructive enumeration of combinatorial objects based on the branch and bound method. By means of this tool a number of 'sports-like' results were obtained. Some of these results are still unsurpassed. N° de réf. du vendeur 9780792319276
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 528. N° de réf. du vendeur 18541370
Quantité disponible : 4 disponible(s)