U sing stochastic differential equations we can successfully model systems that func- tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas- tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math- ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), (Xx(t))) dt.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This book is devoted to mean-square and weak approximations of solutions of stochastic differential equations (Sde). These approximations represent two fundamental aspects in the contemporary theory of Sde. Firstly, the construction of numerical methods for such systems is important as the solutions provided serve as characteristics for a number of mathematical physics problems. Secondly, the employment of probability representations together with a Monte Carlo method allows us to reduce the solution of complex multidimensional problems of mathematical physics to the integration of stochastic equations.
Along with a general theory of numerical integrations of such systems, both in the mean-square and the weak sense, a number of concrete and sufficiently constructive numerical schemes are considered. Various applications and particularly the approximate calculation of Wiener integrals are also dealt with.
This book is of interest to graduate students in the mathematical, physical and engineering sciences, and to specialists whose work involves differential equations, mathematical physics, numerical mathematics, the theory of random processes, estimation and control theory.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 9,90 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 9,70 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Seiten: 184 | Sprache: Englisch | Produktart: Sonstiges. N° de réf. du vendeur 1653494/202
Quantité disponible : 4 disponible(s)
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
Karton. Etat : Sehr gut. Zust: Gutes Exemplar. 172 Seiten Englisch 466g. N° de réf. du vendeur 483282
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction. 1: Mean-square approximation of solutions of systems of stochastic differential equations. 1. Theorem on the order of convergence (theorem on the relation between approximation on a finite interval and one-step approximation). 2. Methods . N° de réf. du vendeur 5967292
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780792332138_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt. 184 pp. Englisch. N° de réf. du vendeur 9780792332138
Quantité disponible : 2 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 184 pp. Englisch. N° de réf. du vendeur 9780792332138
Quantité disponible : 2 disponible(s)
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
Etat : New. N° de réf. du vendeur 1212170-n
Quantité disponible : Plus de 20 disponibles
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - U sing stochastic differential equations we can successfully model systems that func tion in the presence of random perturbations. Such systems are among the basic objects of modern control theory. However, the very importance acquired by stochas tic differential equations lies, to a large extent, in the strong connections they have with the equations of mathematical physics. It is well known that problems in math ematical physics involve 'damned dimensions', of ten leading to severe difficulties in solving boundary value problems. A way out is provided by stochastic equations, the solutions of which of ten come about as characteristics. In its simplest form, the method of characteristics is as follows. Consider a system of n ordinary differential equations dX = a(X) dt. (O.l ) Let Xx(t) be the solution of this system satisfying the initial condition Xx(O) = x. For an arbitrary continuously differentiable function u(x) we then have: (0.2) u(Xx(t)) - u(x) = j (a(Xx(t)), ~~ (Xx(t))) dt. N° de réf. du vendeur 9780792332138
Quantité disponible : 1 disponible(s)
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
Etat : New. N° de réf. du vendeur 1212170-n
Quantité disponible : Plus de 20 disponibles
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 184. N° de réf. du vendeur 26463153
Quantité disponible : 4 disponible(s)