Articles liés à Learning in Graphical Models

Learning in Graphical Models ISBN 13 : 9780792350170

Learning in Graphical Models - Couverture rigide

 
9780792350170: Learning in Graphical Models

Synopsis

In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume.
Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail.
Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Acheter D'occasion

état :  Assez bon
630 Seiten Das hier angebotene...
Afficher cet article
EUR 37,95

Autre devise

EUR 15,95 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Acheter neuf

Afficher cet article
EUR 294,19

Autre devise

EUR 48,99 expédition depuis Allemagne vers Etats-Unis

Destinations, frais et délais

Autres éditions populaires du même titre

9789401061049: Learning in Graphical Models: (Closed))

Edition présentée

ISBN 10 :  9401061041 ISBN 13 :  9789401061049
Editeur : Springer, 2012
Couverture souple

Résultats de recherche pour Learning in Graphical Models

Image fournie par le vendeur

Jordan, M.I.:
Edité par Kluwer Academic Publishers, 1998
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Ancien ou d'occasion Couverture rigide

Vendeur : books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

gebundene Ausgabe. Etat : Gut. 630 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.). Schnitt und Einband sind etwas staubschmutzig; Einbandkanten sind leicht bestossen; der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Sprache: Englisch Gewicht in Gramm: 1120. N° de réf. du vendeur 1492832

Contacter le vendeur

Acheter D'occasion

EUR 37,95
Autre devise
Frais de port : EUR 15,95
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Edité par Springer, 1998
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Ancien ou d'occasion Couverture rigide

Vendeur : Goodwill of Silicon Valley, SAN JOSE, CA, Etats-Unis

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Etat : very_good. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in very good condition! The cover and any other included accessories are also in very good condition showing some minor use. The spine is straight, there are no rips tears or creases on the cover or the pages. N° de réf. du vendeur GWSVV.0792350170.VG

Contacter le vendeur

Acheter D'occasion

EUR 53,94
Autre devise
Frais de port : EUR 3,40
Vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier

Image fournie par le vendeur

Jordan, M. I.
Edité par Springer Netherlands, 1998
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Neuf Couverture rigide
impression à la demande

Vendeur : moluna, Greven, Allemagne

Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Study Institute, Ettore Maiorana Centre, Erice, Italy, September 27-October 7, 1996 In the past decade, a number of different research communities within the computational sciences have studied learning in networks. N° de réf. du vendeur 5968433

Contacter le vendeur

Acheter neuf

EUR 294,19
Autre devise
Frais de port : EUR 48,99
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : Plus de 20 disponibles

Ajouter au panier

Image fournie par le vendeur

M. I. Jordan
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Neuf Couverture rigide
impression à la demande

Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. 648 pp. Englisch. N° de réf. du vendeur 9780792350170

Contacter le vendeur

Acheter neuf

EUR 353,09
Autre devise
Frais de port : EUR 23
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

M. I. Jordan
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Neuf Couverture rigide

Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Neuware -In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume.Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail.Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. 648 pp. Englisch. N° de réf. du vendeur 9780792350170

Contacter le vendeur

Acheter neuf

EUR 353,09
Autre devise
Frais de port : EUR 60
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 2 disponible(s)

Ajouter au panier

Image fournie par le vendeur

M. I. Jordan
ISBN 10 : 0792350170 ISBN 13 : 9780792350170
Neuf Couverture rigide

Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists. N° de réf. du vendeur 9780792350170

Contacter le vendeur

Acheter neuf

EUR 366,41
Autre devise
Frais de port : EUR 65,64
De Allemagne vers Etats-Unis
Destinations, frais et délais

Quantité disponible : 1 disponible(s)

Ajouter au panier