Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli- cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de- fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
Etat : New. N° de réf. du vendeur ABLIING23Feb2416190182971
Quantité disponible : Plus de 20 disponibles
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780792352341_new
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book 'C. Constantinescu and K. Weber (in collaboration with A. 884 pp. Englisch. N° de réf. du vendeur 9780792352341
Quantité disponible : 2 disponible(s)
Vendeur : moluna, Greven, Allemagne
Bundle. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably. N° de réf. du vendeur 5968586
Quantité disponible : Plus de 20 disponibles
Vendeur : preigu, Osnabrück, Allemagne
Buch. Etat : Neu. Advanced Integration Theory | Corneliu Constantinescu (u. a.) | Buch | xxiv | Englisch | 1998 | Springer Netherland | EAN 9780792352341 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. N° de réf. du vendeur 102550402
Quantité disponible : 5 disponible(s)
Vendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 884 Indexes. N° de réf. du vendeur 262175452
Quantité disponible : 4 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book 'C. Constantinescu and K. Weber (in collaboration with A.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 884 pp. Englisch. N° de réf. du vendeur 9780792352341
Quantité disponible : 2 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. Print on Demand pp. 884 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. N° de réf. du vendeur 5672451
Quantité disponible : 4 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book 'C. Constantinescu and K. Weber (in collaboration with A. N° de réf. du vendeur 9780792352341
Quantité disponible : 1 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. PRINT ON DEMAND pp. 884. N° de réf. du vendeur 182175446
Quantité disponible : 4 disponible(s)