Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.
Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 3,50 expédition vers France
Destinations, frais et délaisEUR 23,70 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Ammareal, Morangis, France
Hardcover. Etat : Très bon. Ancien livre de bibliothèque avec équipements. Edition 2002. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 2002. Ammareal gives back up to 15% of this item's net price to charity organizations. N° de réf. du vendeur G-122-170
Quantité disponible : 1 disponible(s)
Vendeur : ThriftBooks-Dallas, Dallas, TX, Etats-Unis
Hardcover. Etat : Good. No Jacket. Former library book; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.05. N° de réf. du vendeur G079237679XI3N10
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books: West, Reno, NV, Etats-Unis
Etat : Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. N° de réf. du vendeur 52072873-75
Quantité disponible : 1 disponible(s)
Vendeur : Librería Ofisierra, Galapagar, MAD, Espagne
Hardcover. Good condition. Dog-eared corners. Libro. N° de réf. du vendeur 146893
Quantité disponible : 1 disponible(s)
Vendeur : Magus Books Seattle, Seattle, WA, Etats-Unis
Hardcover. Etat : VG. used hardcover copy in illustrated boards, no jacket, as issued. light shelfwear, corners perhaps slightly bumped. pages and binding are clean, straight and tight. there are no marks to the text or other serious flaws. N° de réf. du vendeur 1188352
Quantité disponible : 1 disponible(s)
Vendeur : Shakespeare Book House, Rockford, IL, Etats-Unis
Etat : New. The item is Brand New! N° de réf. du vendeur 570TQW0008NH_ns
Quantité disponible : 1 disponible(s)
Vendeur : moluna, Greven, Allemagne
Gebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with . N° de réf. du vendeur 5970343
Quantité disponible : Plus de 20 disponibles
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning. 224 pp. Englisch. N° de réf. du vendeur 9780792376798
Quantité disponible : 2 disponible(s)
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
Hardcover. Etat : New. In shrink wrap. Looks like an interesting title! N° de réf. du vendeur Q-079237679X
Quantité disponible : 1 disponible(s)
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
Buch. Etat : Neu. Neuware -Based on ideas from Support Vector Machines (SVMs), Learning To Classify Text Using Support Vector Machines presents a new approach to generating text classifiers from examples. The approach combines high performance and efficiency with theoretical understanding and improved robustness. In particular, it is highly effective without greedy heuristic components. The SVM approach is computationally efficient in training and classification, and it comes with a learning theory that can guide real-world applications.Learning To Classify Text Using Support Vector Machines gives a complete and detailed description of the SVM approach to learning text classifiers, including training algorithms, transductive text classification, efficient performance estimation, and a statistical learning model of text classification. In addition, it includes an overview of the field of text classification, making it self-contained even for newcomers to the field. This book gives a concise introduction to SVMs for pattern recognition, and it includes a detailed description of how to formulate text-classification tasks for machine learning.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 224 pp. Englisch. N° de réf. du vendeur 9780792376798
Quantité disponible : 2 disponible(s)