Neural Network Models of Conditioning and Action - Couverture souple

 
9780805808421: Neural Network Models of Conditioning and Action

Synopsis

The result of a conference held at Harvard University, this volume presents some of the exciting interdisciplinary developments that are clarifying how animals and people learn to behave adaptively in a rapidly changing environment. The text focuses on aspects of how recognition learning, reinforcement learning, and motor learning interact to generate adaptive goal-oriented behaviors that can satisfy internal needs -- an important topic for understanding brain function as well as for designing new types of autonomous robots.

Because a dynamic analysis of system interactions is needed to understand these challenging phenomena -- and neural network models provide a natural framework for representing and analyzing such interactions -- all the articles either develop neural network models or provide biological constraints for guiding and testing their design. The result of a conference held at Harvard University, this volume presents some of the exciting interdisciplinary developments that clarify how animals and people learn to behave adaptively in a rapidly changing environment. The contributors focus on aspects of how recognition learning, reinforcement learning, and motor learning interact to generate adaptive goal-oriented behaviors that can satisfy internal needs -- an area of inquiry as important for understanding brain function as it is for designing new types of autonomous robots.

Because a dynamic analysis of system interactions is needed to understand these challenging phenomena -- and neural network models provide a natural framework for representing and analyzing such interactions -- all the articles either develop neural network models or provide biological constraints for guiding and testing their design.

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Présentation de l'éditeur

The result of a conference held at Harvard University, this volume presents some of the exciting interdisciplinary developments that are clarifying how animals and people learn to behave adaptively in a rapidly changing environment. The text focuses on aspects of how recognition learning, reinforcement learning, and motor learning interact to generate adaptive goal-oriented behaviors that can satisfy internal needs -- an important topic for understanding brain function as well as for designing new types of autonomous robots.

Because a dynamic analysis of system interactions is needed to understand these challenging phenomena -- and neural network models provide a natural framework for representing and analyzing such interactions -- all the articles either develop neural network models or provide biological constraints for guiding and testing their design. The result of a conference held at Harvard University, this volume presents some of the exciting interdisciplinary developments that clarify how animals and people learn to behave adaptively in a rapidly changing environment. The contributors focus on aspects of how recognition learning, reinforcement learning, and motor learning interact to generate adaptive goal-oriented behaviors that can satisfy internal needs -- an area of inquiry as important for understanding brain function as it is for designing new types of autonomous robots.

Because a dynamic analysis of system interactions is needed to understand these challenging phenomena -- and neural network models provide a natural framework for representing and analyzing such interactions -- all the articles either develop neural network models or provide biological constraints for guiding and testing their design.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

Autres éditions populaires du même titre

9780805808438: Neural Network Models of Conditioning and Action

Edition présentée

ISBN 10 :  0805808434 ISBN 13 :  9780805808438
Editeur : Lawrence Erlbaum Associates Inc, 1991
Couverture souple