This book provides the reader with a review of correlation and covariance among variables, followed by multiple regression and path analysis techniques to better understand the building blocks of structural equation modelling. The concepts behind measurement models are introduced to illustrate how measurement error impacts statistical analyses, and structural models are presented that indicate how latent variable relationships can be established. Examples are included throughout to make the concepts clear to the reader. The structural equation modelling examples are presented using either EQS5.0 or LISREL8-SIMPLIS programming language, both of which have an easy-to-use set of commands to specify measurement and strucural models. No complicated programming is required, nor does the reader need an advanced understanding of statistics of matrix algebra. A goal in writing this volume was to focus conceptually on the steps one takes in analyzing theoretical models. These steps encompass: specifying a model based upon theory or prior research; determining whether the model can be identified to have unique estimates for variables in the model; selecting an appropriate estimation method based on the distributional assumptions of variables; testing the model and interpreting fit indices; and finally respecifying a model based on suggested modification indices, which involves adding or dropping paths in the model to obtain a better model fit. The resources and references provided in this book should equip faculty, students and researchers to enhance their working knowledge of structural equation modelling. Not intended as an in-depth presentation of statistics or factor analysis, this text focuses on the basic ideas and principles behind structural equation modelling. Assuming that the reader has a basic understanding of correlation, the authors have built upon this understanding to present these basic ideas and principles.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
This best-seller introduces readers to structural equation modeling (SEM) so they can conduct their own analysis and critique related research. Noted for its accessible, applied approach, chapters cover basic concepts and practices and computer input/output from the free student version of Lisrel 8.8 in the examples. Each chapter features an outline, key concepts, a summary, numerous examples from a variety of disciplines, tables, and figures, including path diagrams, to assist with conceptual understanding.
The book first reviews the basics of SEM, data entry/editing, and correlation. Next the authors highlight the basic steps of SEM: model specification, identification, estimation, testing, and modification, followed by issues related to model fit and power and sample size. Chapters 6 through 10 follow the steps of modeling using regression, path, confirmatory factor, and structural equation models. Next readers find a chapter on reporting SEM research including a checklist to guide decision-making, followed by one on model validation. Chapters 13 through 16 provide examples of various SEM model applications. The book concludes with the matrix approach to SEM using examples from previous chapters.
Highlights of the new edition include:
Designed for introductory graduate level courses in structural equation modeling or factor analysis taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. An understanding of correlation is assumed. To access the website visit the book page or the Textbook Resource page at http://www.psypress.com/textbook-resources/ for more details.
Randall E. Schumacker is Professor of Educational Research at The University of Alabama where he teaches courses in structural equation modeling. He received his Ph.D. in Educational Psychology from Southern Illinois University. A Past-President of the Southwest Educational Research Association and Emeritus Editor of Structural Equation Modeling, Dr. Schumacker has also served on the editorial boards of numerous journals. His research interests include modeling interaction in SEM, robust statistics, measurement model issues related to estimation, and reliability.
Richard G. Lomax is a Professor in the School of Educational Policy and Leadership at The Ohio State University where he teaches courses in structural equation modeling. He received his Ph.D. in Educational Research Methodology from the University of Pittsburgh. He has served on the editorial boards of numerous journals. His research focuses on models of literacy acquisition, multivariate statistics, and assessment.
Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.
EUR 7,95 expédition depuis Allemagne vers France
Destinations, frais et délaisVendeur : Gabis Bücherlager, Karlsruhe, Allemagne
2,5 x 16,5 x 24,1 cm, Etat : Gut. 288 Seiten Bibliothek-Ex. Stempel, Seiten sehr sauber-leichte Lesespuren. Broschierte Ausgabe. KR-8-1-2 Wir akzeptieren nur Vorkasse. Sprache: Englisch Gewicht in Gramm: 698. N° de réf. du vendeur 80817
Quantité disponible : 1 disponible(s)
Vendeur : Better World Books, Mishawaka, IN, Etats-Unis
Etat : Very Good. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. N° de réf. du vendeur 13012859-6
Quantité disponible : 1 disponible(s)