1 Mathematical Preliminaries.- 1.1 The Pythagorean Theorem.- 1.2 Vectors.- 1.3 Subspaces and Linear Independence.- 1.4 Vector Space Bases.- 1.5 Euclidean Length.- 1.6 The Euclidean Inner Product.- 1.7 Projection onto a Line.- 1.8 Planes in-Space.- 1.9 Coordinate System Orientation.- 1.10 The Cross Product.- 2 Curves.- 2.1 The Tangent Curve.- 2.2 Curve Parameterization.- 2.3 The Normal Curve.- 2.4 Envelope Curves.- 2.5 Arc Length Parameterization.- 2.6 Curvature.- 2.7 The Frenet Equations.- 2.8 Involutes and Evolutes.- 2.9 Helices.- 2.10 Signed Curvature.- 2.11 Inflection Points.- 3 Surfaces.- 3.1 The Gradient of a Function.- 3.2 The Tangent Space and Normal Vector.- 3.3 Derivatives.- 4 Function and Space Curve Interpolation.- 5 2D-Function Interpolation.- 5.1 Lagrange Interpolating Polynomials.- 5.2 Whittaker's Interpolation Formula.- 5.3 Cubic Splines for 2D-Function Interpolation.- 5.4 Estimating Slopes.- 5.5 Monotone 2D Cubic Spline Functions.- 5.6 Error in 2D Cubic Spline Interpolation Functions.- 6 ?-Spline Curves With Range Dimension d.- 7 Cubic Polynomial Space Curve Splines.- 7.1 Choosing the Segment Parameter Limits.- 7.2 Estimating Tangent Vectors.- 7.3 Bézier Polynomials.- 8 Double Tangent Cubic Splines.- 8.1 Kochanek-Bartels Tangents.- 8.2 Fletcher-McAllister Tangent Magnitudes.- 9 Global Cubic Space Curve Splines.- 9.1 Second Derivatives of Global Cubic Splines.- 9.2 Third Derivatives of Global Cubic Splines.- 9.3 A Variational Characterization of Natural Splines.- 9.4 Weighted v-Splines.- 10 Smoothing Splines.- 10.1 Computing an Optimal Smoothing Spline.- 10.2 Computing the Smoothing Parameter.- 10.3 Best Fit Smoothing Cubic Splines.- 10.4 Monotone Smoothing Splines.- 11 Geometrically Continuous Cubic Splines.- 11.1 Beta Splines.- 12 Quadratic Space Curve Based Cubic Splines.- 13 Cubic Spline Vector Space Basis Functions.- 13.1 Bases for C1 and C2 Space Curve Cubic Splines.- 13.2 Cardinal Bases for Cubic Spline Vector Spaces.- 13.3 The B-Spline Basis for Global Cubic Splines.- 14 Rational Cubic Splines.- 15 Two Spline Programs.- 15.1 Interpolating Cubic Splines Program.- 15.2 Optimal Smoothing Spline Program.- 16 Tensor Product Surface Splines.- 16.1 Bicubic Tensor Product Surface Patch Splines.- 16.2 A Generalized Tensor Product Patch Spline.- 16.3 Regular Grid Multi-Patch Surface Interpolation.- 16.4 Estimating Tangent and Twist Vectors.- 16.5 Tensor Product Cardinal Basis Representation.- 16.6 Bicubic Splines with Variable Parameter Limits.- 16.7 Triangular Patches.- 16.8 Parametric Grids.- 16.9 3D-Function Interpolation.- 17 Boundary Curve Based Surface Splines.- 17.1 Boundary Curve Based Bilinear Interpolation.- 17.2 Boundary Curve Based Bicubic Interpolation.- 17.3 General Boundary Curve Based Spline Interpolation.- 18 Physical Splines.- 18.1 Computing a Space Curve Physical Spline Segment.- 18.2 Computing a 2D Physical Spline Segment.- References.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
EUR 13 expédition depuis Allemagne vers France
Destinations, frais et délaisEUR 7,92 expédition depuis Etats-Unis vers France
Destinations, frais et délaisVendeur : Books Puddle, New York, NY, Etats-Unis
Etat : New. pp. 240 1st Edition. N° de réf. du vendeur 26457683
Quantité disponible : 4 disponible(s)
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
Etat : New. pp. 240. N° de réf. du vendeur 18457689
Quantité disponible : 4 disponible(s)
Vendeur : Majestic Books, Hounslow, Royaume-Uni
Etat : New. pp. 240. N° de réf. du vendeur 7422988
Quantité disponible : 4 disponible(s)
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
Etat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. N° de réf. du vendeur ABNR-87282
Quantité disponible : 1 disponible(s)
Vendeur : Basi6 International, Irving, TX, Etats-Unis
Etat : Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. N° de réf. du vendeur ABEJUNE24-130026
Quantité disponible : 1 disponible(s)
Vendeur : Berliner Büchertisch eG, Berlin, Allemagne
Hardcover. Etat : Gut. 2000. XII, 244 S. Gutes Exemplar, geringe Gebrauchsspuren, Cover/SU berieben/bestoßen, innen alles in Ordnung; Good copy, light signs of previous use, cover/dust jacket shows some rubbing/wear, interior in good condition. C240916ah179 ISBN: 9780817641009 Sprache: Englisch Gewicht in Gramm: 531. N° de réf. du vendeur 705465
Quantité disponible : 1 disponible(s)
Vendeur : Carpe Diem Fine Books, ABAA, Monterey, CA, Etats-Unis
Hardcover. 1st. 8vo. 244pp. Bibliography; Index. Figures; Exercises. Glossy printed boards in fine condition. ". covers a wide variety of explicit approaches to designing splines for the interpolation of points in the plane by curves, and the interpolation of points in 3-space by surfaces." Next day shipping. Celebrating our 15th year - all domestic orders ship with Delivery Confirmation Tracking Number - Images available upon request. N° de réf. du vendeur 13182
Quantité disponible : 1 disponible(s)
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
Buch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Spline modeling affects a number of fields, including statistics, computer graphics, CAD programming and other areas of applied mathematics. This book presents a detailed examination of cubic splines which includes a significant amount of original material not found elsewhere in the literature. Several C programs with interesting computational approaches supply the reader with a number of useful tools. The clear and concise presentation includes many interesting exercises. 260 pp. Englisch. N° de réf. du vendeur 9780817641009
Quantité disponible : 2 disponible(s)
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
Buch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Spline modeling affects a number of fields, including statistics, computer graphics, CAD programming and other areas of applied mathematics. This book presents a detailed examination of cubic splines which includes a significant amount of original material not found elsewhere in the literature. Several C programs with interesting computational approaches supply the reader with a number of useful tools. The clear and concise presentation includes many interesting exercises. N° de réf. du vendeur 9780817641009
Quantité disponible : 2 disponible(s)
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
Etat : New. In. N° de réf. du vendeur ria9780817641009_new
Quantité disponible : Plus de 20 disponibles