Articles liés à Homogenization of Partial Differential Equations

Homogenization of Partial Differential Equations - Couverture souple

 
9780817671808: Homogenization of Partial Differential Equations

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

A comprehensive study of homogenized problems, focusing on the construction of nonstandard models

Details a method for modeling processes in microinhomogeneous media (radiophysics, filtration theory, rheology, elasticity theory, and other domains)

Complete proofs of all main results, numerous examples

Classroom text or comprehensive reference for graduate students, applied mathematicians, physicists, and engineers

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

Review

From the reviews:

"The aim of homogenization theory is to establish the macroscopic behaviour of a microinhomogenous system, in order to describe some characteristics of the given heterogeneous medium. ... The book is an excellent, practice oriented, and well written introduction to homogenization theory bringing the reader to the frontier of current research in the area. It is highly recommended to graduate students in applied mathematics as well as to researchers interested in mathematical modeling and asymptotical analysis." (J. Kolumban, Studia Universitatis Babes-Bolyai Mathematica, Vol. LII (1), 2007)

From the Back Cover

Homogenization is a method for modeling processes in microinhomogeneous media, which are encountered in radiophysics, filtration theory, rheology, elasticity theory, and other domains of mechanics, physics, and technology. These processes are described by PDEs with rapidly oscillating coefficients or boundary value problems in domains with complex microstructure. From the technical point of view, given the complexity of these processes, the best techniques to solve a wide variety of problems involve constructing appropriate macroscopic (homogenized) models.

The present monograph is a comprehensive study of homogenized problems, based on the asymptotic analysis of boundary value problems as the characteristic scales of the microstructure decrease to zero. The work focuses on the construction of nonstandard models: non-local models, multicomponent models, and models with memory.

Along with complete proofs of all main results, numerous examples of typical structures of microinhomogeneous media with their corresponding homogenized models are provided. Graduate students, applied mathematicians, physicists, and engineers will benefit from this monograph, which may be used in the classroom or as a comprehensive reference text.

Les informations fournies dans la section « A propos du livre » peuvent faire référence à une autre édition de ce titre.

  • ISBN 10 0817671803
  • ISBN 13 9780817671808
  • ReliurePaperback
  • Langueanglais
  • Coordonnées du fabricantnon disponible

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande

Autres éditions populaires du même titre

9780817643515: Homogenization of Partial Differential Equations

Edition présentée

ISBN 10 :  0817643516 ISBN 13 :  9780817643515
Editeur : Birkhauser Boston Inc, 2005
Couverture rigide