L'édition de cet ISBN n'est malheureusement plus disponible.
Part I. The topological structure of isolated critical points of functions.- Introduction.- Elements of the theory of Picard-Lefschetz.- The topology of the non-singular level set and the variation operator of a singularity.- The bifurcation sets and the monodromy group of a singularity.- The intersection matrices of singularities of functions of two variables.- The intersection forms of boundary singularities and the topology of complete intersections.- Part II. Oscillatory integrals.- Discussion of results.- Elementary integrals and the resolution of singularities of the phase.- Asymptotics and Newton polyhedra.- The singular index, examples.- Part III. Integrals of holomorphic forms over vanishing cycles.- The simplest properties of the integrals.- Complex oscillatory integrals.- Integrals and differential equations.- The coefficients of series expansions of integrals, the weighted and Hodge filtrations and the spectrum of a critical point.- The mixed Hodge structure of an isolated critical point of a holomorphic function.- The period map and the intersection form.- References.- Subject Index.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
(Aucun exemplaire disponible)
Chercher: Créez une demandeVous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !
Créez une demande