The perturbation theory for the operator div is of particular interest in the study of boundary-value problems for the general nonlinear equation $F(\dot y,y,x)=0$. Taking as linearization the first order operator $Lu=C_{ij}u_{x_j}^i+C_iu^i$, one can, under certain conditions, regard the operator $L$ as a compact perturbation of the operator div. This book presents results on boundary-value problems for $L$ and the theory of nonlinear perturbations of $L$. Specifically, necessary and sufficient solvability conditions in explicit form are found for various boundary-value problems for the operator $L$. An analog of the Weyl decomposition is proved.The book also contains a local description of the set of all solutions (located in a small neighborhood of a known solution) to the boundary-value problems for the nonlinear equation $F(\dot y, y, x) = 0$ for which $L$ is a linearization. A classification of sets of all solutions to various boundary-value problems for the nonlinear equation $F(\dot y, y, x) = 0$ is given. The results are illustrated by various applications in geometry, the calculus of variations, physics, and continuum mechanics.
Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.
Vendeur : Antiquariat Renner OHG, Albstadt, Allemagne
Hardcover. Etat : Wie neu. Providence, AMS (1997). gr.8°. XIII, 104 p. Hardbound. Translations of Mathematical Monographs, 160.- Like new. N° de réf. du vendeur 96360
Quantité disponible : 1 disponible(s)
Vendeur : Buchpark, Trebbin, Allemagne
Etat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. N° de réf. du vendeur 33291279/2
Quantité disponible : 1 disponible(s)